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ABSTRACT

This report presents the development of a
working system which would allow a returning space-
craft to make a soft landing on land or on water.
This landing system combines a gliding parachute
for maneuver and wind-drift negation capability with
retrograde rockets fired just above the surface to
reduce the descent velocity prior to impact. The
report documents the entire 3-year effort which

‘'began with scaled-model tests and concluded with a
completely successful full-scale land landing demon-
stration at Gemini spacecraft design conditions.
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GEMINI LAND LANDING SYSTEM

DEVELOPMENT PROGRAM

VOLUME I - FULL-SCALE INVESTIGATIONS

By Leland C. Norman, Jerry E. McCullough,
and Jerry C. Coffey
Manned Spacecraft Center

SUMMARY

This report documents the accomplishment of an historic milestone in
spacecraft landing technology by presenting the development of a working
system which would allow returning spacecraft to land softly on land, rather
than be restricted to landing in the ocean. The basic program objective was
to develop and to demonstrate a system which could be applied directly to the
Gemini spacecraft. This objective has been fully met. The program also
provided the opportunity and the focal point for the formation of a sound tech-
nological base from which land landing systems for future manned spacecraft
may be developed.

The Gemini system provides the ability to land the spacecraft on a
variety of unprepared farm and ranch lands, with all accelerations controlled
to a level of approximately 5g. The system also provides an improved water
landing capability should the necessity arise. In both types of landing, the
pilot must fly the spacecraft to the desired touchdown point. Near the surface,
he is required only to aline with the wind axis, and is not faced with the deli-
cate flare maneuver necessary with other proposed land landing methods.

This landing system has six integrated components, the functions of
which have been verified individually and jointly. A controllable, gliding
parachute descent system was developed to furnish the necessary range, ob-
stacle avoidance, and wind-drift negation capability without compromising the
high deployment reliability of standard parachutes. Retrograde rockets were
designed and developed to be fired just above the landing surface to reduce
descent velocity prior to impact. The mechanical landing gear, originally
designed for the Gemini paraglider, was incorporated without change for at-
tenuation of residual vertical velocity and for post-impact stability. Turn



control motors were developed for steering the parachute; two altitude sens-
ing devices were developed for ignition of the rockets at the precise height;
and the pilot display and the visual reference requirements were determined.

This 3-year program began with a realistic evaluation of the conditions
under which a land landing system must operate, and the desire to develop the
simplest, the safest, and the most reliable landing method possible. System
performance and spacecraft interface requirements were analytically deter-
mined, then incorporated as preliminary specifications for development of
the components. Two scaled-model test programs were conducted to inves-
tigate flight and landing characteristics of the integrated system. These
studies proved to be remarkably accurate in predicting full-scale perform-
ance.

Following the scaled-model tests, a program of 14 full-scale tests was
conducted, utilizing a Gemini boilerplate vehicle which duplicated the flight
spacecraft insofar as the landing system was concerned. These full-scale
flight tests integrated the developed components into a working system, and
culminated in a completely successful demonstration of a land landing at
Gemini spacecraft design conditions.

In this demonstration, the boilerplate vehicle, ballasted to the correct
weight and center-of-gravity location, executed a nominal Gemini parachute
deployment and attitude repositioning sequence. The vehicle was maneuvered
by radio command approximately 2 miles crosscountry, alined with the wind,
and landed 60 yards from the center aiming point in the primary target area.
The maximum accelerations experienced were below 5g. This test demon-
strated the land landing system in realistic operation, and successfully con-

cluded the development program.

In support of the basic objective, definitive specifications for flight
hardware have been prepared. All components were designed for operation
in a spacecraft environment, and no known problems exist which would pre-
vent their flight qualification. To complete the Gemini effort, operational
mission and recovery plans were prepared for employing the land landing
system in the Gemini Program.

This document presents the entire 3-year development and demonstra-
tion effort in technical detail, and does not require additional references. It
contains a complete description of the system and all test results. This
effort was conducted primarily by Manned Spacecraft Center (MSC) personnel,
and amply demonstrates the advanced technical capability from which MSC
can look with confidence toward the development of new systems.



INTRODUCTION

At this point in the manned exploration of space, all past and currently
planned earth landing systems require that the returning spacecraft land in
water. Landing in the ocean allows for a wide reentry dispersion and a
considerable saving in weight, since the water relieves the necessity for an
onboard attenuation system. Unfortunately, landing in the ocean also dictates
a large Naval recovery force, and salt-water corrosion seriously inhibits
reuse of the spacecraft. Due to the increasing intensity of manned missions,
which makes spacecraft reuse an important factor, and because increased
reentry guidance capability now makes point landings feasible, the develop-
ment of land landing capability is a prime objective of the Manned Spacecraft
Center.

During the past 3-1/2 years, the Manned Spacecraft Center has devoted
considerable effort toward the investigation of systems and techniques for
landing spacecraft on land as a planned means of mission termination. As a
part of the investigation, a program was conducted to investigate the feasi-
bility of employing a gliding parachute/retrorocket system. This program,
conducted entirely as a Manned Spacecraft Center development effort, utilized
a Mercury boilerplate test vehicle, with a glidesail descent system and a
manifolded rocket system thrusting through the center of the heat shield for
impact attenuation. The very promising results of these tests demonstrated
the feasibility of this type of system and provided the basis for the develop-
ment program described in this report.

In September 1962, a land landing system development program was
initiated at the Manned Spacecraft Center with the following objectives: to
compile a complete data description of system performance, to prepare
detailed specifications for flight hardware, and to determine the operational
procedures by which the land landing system could be employed in the
Gemini Program.

Detailed descriptions of the topics discussed in Volume I are found in
Volume II. These are: Section I, One-Third-Scale Flight Dynamics Tests of
the Gemini Land Landing System; Section II, Landing Dynamics of a One-
Third-Scale Para-Sail/ Landing Rocket Model; Section III, Parachute Develop-
ment; Section IV, Rocket-Motor Development; Section V, Altitude-Sensor
Development; Section VI, Turn-Control Motor Development; Section VII,
Investigation of the Visual Reference Requirements for Pilot Control of Gliding
Parachutes for Land Landing of Spacecraft; Section VII, Gemini Flight-

Test Vehicle for the Para-Sail/Landing Rocket Program; Section IX, Landing
Gear and Test Hardware Verification; Section X, Operational Performance
Study ; Section XI, Instrumentation and Electronic Systems of the Gemini



Para-Sail/Retrorocket System; and Section XII, Sequencing and Ignition
Systems for the Gemini Land Landing Program.

The authors wish to emphasize that the successful system development
effort described represents the combined efforts of over 300 Manned Space-
craft Center personnel. Management of the total program was exercised by
the Landing Technology Branch, Structures and Mechanics Division. The
following organizations participated in and contributed to the development of
the land landing system.

Structures and Mechanics Division

Landing and Recovery Division

Technical Services Division

Propulsion and Power Division

Instrumentation and Electronic Systems Division
Photographic Technology Laboratory
Computation and Analysis Division

Crew Systems Division

Gemini Program Office

Procurement and Contracts Division

Pioneer Parachute Company, Inc.

Sylvania Electric Products, Inc., Electronic Systems Division
DeHavilland Aircraft of Canada, Ltd.

Aircraft Armaments, Inc.

Thiokol Chemical Corp., Elkton Division
McDonnell Aircraft Corp.

In the preparation of this document, the writers wish to express appre-
ciation to John W. Kiker, James K. Hinson, and Harold E. Benson, who
exercised supervisory responsibility during the development effort, and
served as approving editors.

SYMBOLS
CD drag coefficient
d0 nominal diameter based on total canopy area, ft
F opening force, lb

KIAS indicated airspeed, n. mi./hr



k constant

L/D  lift-to-drag ratio
. 2 2
q dynamic pressure, 1/2 pv*<, 1b /ft

R/D  rate of descent, ft/sec

R/T  rate of turn, deg/sec

S area, ft2

t time, sec

Vv velocity, ft/sec
w weight, 1b

o density

GENERAL DESIGN PHILOSOPHY

The design of this system began with a realistic appraisal of the condi-
tions under which a land landing system must operate, and with a desire to
develop the most trustworthy and the most reliable system possible. A sys-

limits.

Many investigations of new concepts have been conducted in the high
lift-to-drag ratio (L/D), or aircraft-like field, as well as various high-wing-
loading, low L/D lifting bodies. In common with modern day aircraft, the
operation of each of these devices is based upon a final flare maneuver
wherein descent velocity is translated into horizontal velocity. The high
horizontal speeds caused by the flare maneuver require a prepared landing
surface and a high degree of pilot skill to achieve a successful landing.

Since the attenuation system must account for this horizontal velocity as
well as vertical velocity, any forward speed in excess of that required to



cancel wind drift creates a problem rather than offers a solution. A pre-
liminary survey of available landing sites within the United States indicated
that an L/D of unity would be sufficient to cancel wind-induced drift.

The landing system, as conceived for this development program and
demonstrated in the feasibility study, employed a gliding parachute for limited
range capability, obstacle avoidance, and negation of wind drift, with retro-
grade rockets fired just above the ground to reduce descent velocity at impact.
This system would be operationally employed by reentering the spacecraft
over a selected land zone, and then allowing the flight crew to determine and
to maneuver to the touchdown point within the zone through visual observation
of wind drift and obstacle coverage. Since the forward velocities encountered
are relatively low, this type of system is not restricted to landing on a pre-
pared runway, but canland on a variety of selected farm and ranch lands.

Of equal import, the pilot would not be faced with a delicate flare maneuver,
but would only be required to maintain the proper heading at touchdown.

Gliding Parachute

For the descent system, the philosophy followed was to extend existing
technology by developing a high-performance parachute which still retained
the light weight, low volume, and high reliability of standard parachute sys-
tems. A gliding parachute has a forward velocity as well as a rate of sink;
hence, it descends at an angle to the vertical. When directional control means
are incorporated, the forward velocity allows limited range capability and
maneuvering to avoid local obstacles. This forward velocity also allows the
cancellation of horizontal drift due to surface winds. This capability is
important since it permits control of the direction of impact and presents the
attenuation system with a limited set of energy conditions.

Impact Attenuation

The choice of solid-propellant rocket motors for attenuation of descent
velocity was based upon low weight and volume requirements and proven per-
formance in other spacecraft applications. The technology existed; only the
concept of final braking, just prior to touchdown, had not been thoroughly
developed. In addition to the rockets, a set of landing gear was included to
provide mechanical attenuation of residual vertical velocity, slideout dissipa-
tion of any remaining horizontal velocity, and post-impact stability.



System Implementation Hardware

In addition to the parachute, rockets, and landing gear, an altitude
sensing device was required for precise control of rocket-ignition altitude,
Preliminary studies indicated that existing methods did not furnish the re-
quired degree of accuracy. A control package was required to maneuver the
system; and finally, the pilot display and visual reference system require-
ments would have to be determined to allow the flight crew to utilize fully
the maneuver capability.

LAND LANDING SYSTEM

The first order of investigation was the analytical definition of design
requirements and of performance parameters, and the translation of these
into development specifications for the system components. Next, the com-
ponents were developed to meet these specifications. At the same time,
scaled-model tests were conducted to determine preliminary system flight
and landing dynamics. Finally, the developed components were integrated
into full-scale system tests. At the end of the development phase, a demon-
stration of the complete land landing system at Gemini Spacecraft design con-
ditions was conducted.

Concurrent with the hardware development effort, an operational evalua-
tion of system capability was conducted to determine exact landing zone cri-
teria, flight operational procedures, and support equipment requirements.

Two boilerplate vehicles were designed and fabricated especially for the
land landing system tests. These vehicles duplicated the size, shape, struc-
tural hardpoints, and stowage volumes of the flight spacecraft; and were
ballasted to the correct weight and center-of-gravity location. Figure 1 illus-
trates a spacecraft station and nomenclature diagram and indicates the
reference axes. Figures 2 and 3 depict the salient test vehicle features and
landing system stowage locations. A detailed description of the test vehicles
and associated hardware is contained in Volume II, Section VIII.

Figure 4 shows the land landing system in flight, traveling from right to
left. The rear of the canopy is comprised of shaped slots which allow the
entrapped air to exit down and aft, This exiting flow forces the canopy to its
lifting angle of attack. The front of the canopy is composed of smooth, solid
panels and assumes a cambered pressure shape, forming a crude airfoil which
achieves a one-to-one glide ratio. The row of panels below the skirt on each
side furnishes directional stability and creates an elliptical, inflated planform.
The four vertical rows of exhaust panels on each side are the turn slots, and



turns are accomplished by opening and closing the slots with a miniature
cable and winch system which is located in the test vehicle. During tests,
these winches, or turn motors, are activated by radio command.

The landing-gear system (fig. 4) consists of two main gears and one
nose gear in a tricycle arrangement. The two main gears are cantilever
struts connected to a hydraulic damper and are capable of spring-like deflec-
tion. The nose gear is composed of a telescoping hydraulic shock-absorber
strut. All three gears have flat skid-like shoes to allow slideout. These
gears are stowed until attitude repositioning; then they are pyrotechnically
deployed.

The twin booms extending beneath the test vehicle are the deHavilland
altitude sensors. These devices consist of self-extending metal probes with
microswitch heads located at the tips. The sensors extend downward to the
desired rocket-ignition height and trigger the rocket motors when the micro-
switch heads contact the surface. These sensors, either of which is capable
of firing both rockets, are stored during the early portion of the flight and
are deployed pyrotechnically after attitude repositioning.

The two rocket motors are located on the underside of the vehicle be-
tween the main landing gears. Figure 5 shows the bottom of the vehicle and
the rockets mounted in the lower equipment bay. The nozzles are angled to
allow the thrust line to pass through the center of gravity of the vehicle.

SUPPORTING ANALYSIS AND TESTING

Many supporting investigations, scaled-model tests, and component
development programs were conducted to define and to develop the system
prior to testing full scale. To provide an integrated picture of the many pre-
liminary facets, this brief description of the results of each of these efforts
indicates how the facets phased into the overall program. Tables Ito X1
contain a presentation of all the tests conducted during the program. The
more important of these studies and tests are presented in detail in Vol-
ume IL

Analytical Design Requirement Studies
Operational and analog ﬂight-simulation studies. - These studies were

conducted to define detailed performance parameters for the parachute, to
furnish a preliminary description of the landing zone, and to determine



operational system performance minimums. The results may be summarized
as follows:

1. The parachute must be capable of negating a 30 ft/sec surface wind,
and the landing gear must be capable of accepting horizontal velocities of
from 0 to 30 ft/sec on an unprepared sod surface.

2. A rate of turn (R/T) of at least 10 deg/sec is required to allow ob-
stacle avoidance and wind alinement.

3. The system is compatible with zone landing in an area described as
a 17- by 8-nautical-mile ellipse of selected, but unprepared, terrain. This
area must be at least 60 percent free of obstacles and should not contain lo-
calized ground slopes of more than 15°. It should be easily accessible by
ground vehicles to facilitate landing support and recovery operations. A
ground advisory station located in the zone would increase system capability
during periods of low visibility.

Parametric optimization of rocket performance. - The rocket-motor
performance requirements were determined in an optimization study which
considered the coupled effects of performance and environmental variations.
Motor envelope and interface requirements were determined by the selection
of the lower equipment bay for installation.

This study indicated that the rocket motors should employ a dual thrust
level. The first is a high-level thrust (resulting in approximately 2.65g) act-
ing for a short time interval to lower the descent velocity to a nominal value
of 3 to 10 ft/sec. The second level is a sustained thrust (resulting in approx-
imately 0.5g) designed to maintain the descent rate near the minimum value
during the period in which it is acting on the spacecraft. The sustained low
thrust level effectively increases the time during which the descent rate is
less than the design landing velocity of 10 ft/sec. A detailed description of
the rocket performance analysis is found in Volume II, Section IV.

Gemini spacecraft design integration. - These studies were conducted to
insure that the design requirements and the performance parameters were
compatible with Gemini spacecraft weight, structural arrangement and limita-
tions, reentry dynamics, and landing system envelope. The initial study was
augmented in the summer of 1963 when McDonnell Aircraft Corporation, at
the direction of the Gemini Program Manager, conducted a study of the inte-
gration of the land landing system into the Gemini flight program. These
studies established the following parameters:

1.  Utilization of the existing Gemini spacecraft drogue parachute and
the rendezvous and recovery system (R and R) canister.



9. Deployment of the Para-Sail, at nominal Gemini reentry conditions,
from the separated R and R canister with the spacecraft in the heat-shield-

down attitude.

3. Utilization of the existing paraglider pallet disconnect assembly
attach points on the nose gear for the Para-Sail riser attach points while the
spacecraft is in the heat-shield-down attitude.

4. Change of vehicle attitude to a 13° nose-down flying attitude after
Para-Sail opening.

5. Limitation to existing paraglider structural hardpoints for suspen-
sion system attach points in the flying attitude.

6. Utilization of the existing Gemini landing gear, gear stowage pro-
visions, and deployment mechanisms. Modification to the gear was per-
missible insofar as it did not require modification to the spacecraft.

7. Limitation to the existing paraglider control-system envelope within
the hatch beam for location of the Para-Sail control actuators.

8. Limitation to the existing paraglider stowage volume in the R and R
canister for Para-Sail stowage.

9. Four possible altitude-sensor locations, providing the required
stowage volume, could be employed. These are: the landing-gear wells, the
lower equipment bay, the area aft of the lower equipment bay, and the conical
section forward of the pressure vessel. (The area aft of the lower equipment
bay was used during the development program. )

10. Utilization of the existing lower equipment bay for location of the
landing rockets.

Component Development Programs

Para-Sail gliding parachute. - The Para-Sail program was designed to
develop the parachute to meet the performance parameters obtained from the
analytical studies. Three separate development phases were conducted. The
first consisted of low-speed deployment and steady-state evaluation tests con-
ducted with 24-foot-diameter models. The second began with an 80-foot diam-
eter configuration designed by the inventor of the Para-Sail. Four major con-
figuration changes were made during the test program. The third consisted of
14 verification tests of the final configuration, resized to 69.8 feet in diame-
ter, to provide the correct rate of descent. This test program was conducted

10



at El Centro, California. These efforts developed a parachute demonstrating
the following performance parameters:

suspended weight, b. . .. ..., .., 4 7150
Deployment altitude, ft . ... ... . .. . ../ """ 10 600
Deployment dynamic pressure (design), lb/ft2 ......... 80
Rate of descent at 5000-ft pressure altitude, ft/sec ..., . . 29
Lift-to-dragratio .. ... T 1.0+
Rate of turn (control-line force = 100 1b), deg/sec . ... .. . 25
Stability, steady-state (maximum oscillation), deg. . . . , . . +3
Ultimate strength capability (1.5 design), lb/ft2 ........ 120
Maximum opening force (design q), b . ...... . .. . ° 16 000

The final configuration meets all the land landing system requirements,
and can be qualified for space flight. The total weight of the parachute, de-
ployment bag, pilot parachute, risers, and so forth, is 153 pounds. A de-
tailed description of this development effort is contained in Volume II, Sec-
tion III.

Landing rockets. - The landing rockets were developed for the Manned
Spacecraft Center by Thiokol Chemical Corporation. These rocket motors
met the lower equipment bay envelope and interface requirements and fur-
nished the thrust-time characteristics defined in the analytical study. The
propellant, designated TP-H- 1050, was developed and qualified for the Dyna-
Soar acceleration motors > and the Holex 3575 initiator was previously
qualified for the Gemini Spacecraft retrorockets.

Before the rocket motors were incorporated into the system test pro-
gram, 12 firings were conducted to verify thrust-time characteristics after
the motors were subjected to temperature and vibration environments. These
motors met all system requirements and could be qualified for space flight.

The two rocket motors and mounts have a total weight of 60 pounds.
(See Volume II, Section IV for a detailed description of the development and
verification effort. )

Turn-control motors. - Directional control of the Para-Sail is accom-
plished by retracting and extending cables that close and open the turn slots -
on each side of the canopy. At program initiation, the force, the travel, and
the takeup time requirements were unknown. Todetermine these parameters,
a set of control motors, based upon analytically determined requirements,
was developed, under contract, by Aircraft Armaments, Inc., and included in
initial system testing. As the system test program progressed, it was neces-
sary to modify these motors extensively to obtain adequate performance
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(Volume II, Section VI). After modification, these motors were used through-
out the full-scale test program and functioned satisfactorily. Based upon the
results obtained during the full-scale tests, specifications for turn motors,
which could be qualified for space flight, have been prepared and will be
discussed later. The test turn motors weighed 10 pounds each, for a total

of 20 pounds, including mounts.

Altitude sensors. - A preliminary survey of available altitude-sensing
devices, conducted at program initiation, indicated that none of the devices
furnished the degree of terrain height accuracy required for precise control
of rocket-ignition altitude, and that a sensor must be developed for use with
the land landing system. To determine the direction this development should
take, a study of all known methods and principles that could be applied to
sensing altitude was conducted, under contract, by Sylvania Electronics Divi-
sion. This study recommended a continuous-wave homodyne electronic device
packed up by a self-extending mechanical probe. The self-extending mechan-
ical probe was selected for development for reasons of reliability, cost, and
development schedule.

Two sensing devices were actually developed. An interim sensor was
developed within the Manned Spacecraft Center for incorporation into early
tests. This device consisted of a ball-mounted microswitch head which was
gravity deployed and suspended beneath the test vehicle by its own electrical
lead. While this sensor was never considered a flight quality item, it proved
to be completely reliable.

The second altitude sensor, developed under contract by deHavilland
Aircraft of Canada, Ltd., isa self-extending tubular probe that can be com-
pactly stored until operation. A sensor head, located at the probe tip, con-
tains a microswitch system which closes when it contacts the landing surface,
sending the rocket-firing signal. This head can accept impact angles ranging
from vertical to horizontal, on land or water.

To increase the reliability during full-scale tests, two deHavilland sen-
sors were employed, either of which was capable of firing both rockets. Sev-
eral minor design deficiencies were noted in this device, and a redesign effort
was initiated to correct them. This effort was completed in late October 1965,
and included 50 reliability firings under simulated air loads. These tests
demonstrated that this sensor could be qualified for space flight. Each
deHavilland sensor has a total installed weight of 7 pounds.

A detailed presentation of the development of both sensing devices is
discussed in Volume II, Section V.
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Pilot display and visual reference. - A study was conducted to determine
the pilot display and visual reference system requirements necessary to
accomplish a land landing solely under crew visual control. The approach
followed was to define the minimum requirements and to indicate varioug
types of devices capable of meeting the requirements, rather than to design
the specific hardware.

This study consisted of two basic phases. The first was a series of
helicopter simulated descents in which a pilot viewed the ground through var-
ious reticles and instructed the helicopter pilot to maneuver. The helicopter
descended and maneuvered in simulation of Para-Sail performance. The
second consisted of 50 drop tests of a 1/3-scale-model system which included
a radio-command-actuated control system, and an onboard television system
which viewed the ground at various angles through a variety of lenses and
reticles. The pilot controlled the vehicle descent by radio command, with
the television monitor as the sole visual reference.

These tests determined the following requirements. The field of view
should contain as much of the landing area as possible, with a minimum
included angle of 30° to the rear and both sides and at least 10° beyond the
no-wind landing point to the front. The visual device may be of unity power
and should include crosshairs to facilitate determination of wind drift. A
compass and an altimeter should be included in the pilot display. With this
type of system, visual control can begin at Gemini deployment altitude, and
wind drift can be determined beginning at approximately 6000 feet.

Studies indicated four types of devices which can meet the necessary
requirements. The types of devices are: closed-circuit television, optical
periscope, fiber optics, and pop-up external mirrors. As an indication of
visual system weight, a fiber optics bundle, meeting the requirements
discussed, would weigh approximately 12 pounds, including mounts. A de-
tailed presentation of the visual reference investigation is found in Volume II,
Section VII.

Mechanical landing gear. - The mechanical landing gear incorporated in
the system development program was originally designed for use with the
Gemini paraglider, but was eliminated from the Gemini Program before its
development was completed. This gear system, composed of three tricycle-
arranged oleo-pneumatic shock absorbers coupled with struts and skids, was
designed to impact on a prepared surface at rates of descent up to 10 ft/sec
and horizontal velocities up to 100 ft/sec. These gears were included in the
land landing system to attenuate the descent velocity remaining after rocket
fire and to provide a stable touchdown system.
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Before the gears were included in system tests, a separate test series
was conducted to verify gear deployment and to determine attenuation capa-
pilities over the range of vehicle attitudes and velocities expected when these
gears were used with the gliding parachute and landing rockets. These tests

indicated the following results:

1. The method of pyrotechnic deployment is satisfactory, including the
design case of only one of the two available actuators firing.

9. Attenuation capability was established throughout the envelope.

Descent velocity, ft/sec . . . .« o oo 0to 12
Horizontal velocity, ft/sec . . . . . .« .« . o .. 0 to 30
Vehicle pitch attitude, deg . . . . . .« o0 o oo -8 to -18.7
Vehicle yaw attitude (with 30 ft/sec horizontal

velocity), deg . « . . o« o o oo e e e e +15

The total weight of the landing gear is 310 pounds, including mounting brack-
etry. (See Volume II, Section IX for a detailed description of the landing gear
functions and the verification tests.)

Test implementation hardware. - This area includes the design, manu-
facture, and verification of 41 items of test hardware. Volume II, Section VIII
contains drawings and functional descriptions of these items, and Volume II,
Section IX discusses the verification tests conducted before these items were
included in system testing.

Scaled-Model System Tests

Two scaled-model test programs were conducted to determine prelim-
inary flight and landing characteristics of the integrated system. Both pro-
grams proved to be extremely accurate in the prediction of full-scale system
characteristics.

One-third-scaled-model flight tests. - The primary objectives of this
study were to investigate the dynamic behavior of the vehicle-parachute
combination; to determine the parachute load distribution, control-line
forces, and response to control inputs; and to obtain a preliminary evaluation
of the visual references required.

Twenty-five air drops were made with the 1/3-scaled-model system.
These drops featured a radio-command-actuated control system and a 24-foot-
diameter Para-Sail, the performance of which was representative of that
expected from the full-scale version.
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The results of these tests indicated that the vehicle /parachute com-
bination was dynamically stable, with oscillations of less than 5° about a]]
three axes during straight flight. Change of vehicle attitude from heat-shield~
down reentry to horizontal posed no stability problems; and control system
force-travel requirements were quite reasonable. It was possible to maney-
ver the system to a preselected area and to land with the correct wind aline-
ment. (A detailed presentation of this investigation is found in Volume II,
Section I.)

One-third-scaled-model landing dynamics tests. - Tests were conducted
with a 1/3 dynamically scaled model of the Gemini Spacecraft with scaled
landing-gear force-stroke simulation and cold-gas rocket-thrust simulation.
These tests, conducted at MSC on the parallel-bar pendulum impact-test
facility, were designed to determine the vehicle dynamics during rocket firing
and associated impact and post-impact accelerations over a wide range of
velocities and vehicle attitudes. Rocket-thrust simulation was accomplished
with a high-pressure cold-gas system programed to provide scaled thrust-
time characteristics. The cold-gas system was selected to allow adequate
flexibility in varying rocket performance to meet test objectives.

Fifty tests, covering a wide range of conditions, established satisfac-
tory operation of the landing-rocket/landing-gear attenuation system through-
out the following envelope :

Vertical velocity (initial), ft/sec . .. . . . 30
Horizontal velocity, ft/sec. ... .. .. .. 0 to 30
Vehicle yaw attitude, deg . .. ... .. .. +15 (about 0)
Vehicle pitch attitude, deg . . . . ... . .. +5 (about 13° nose down)
Vehicle roll attitude, deg . . ...... .. +10 (about 0)

A detailed description of this test program is contained in Volume II, Sec-
tion II.

Flight Operational Analysis and Planning

Concurrent with system development, operational analyses were con-
ducted to design and to plan a Gemini flight mission with the land landing sys-
tem as the planned means of mission termination. These operational studies
are presented in detail in Volume II, Section X, and the results are sum-
marized briefly here.

Many farm and ranch lands located within the continental United States
met the landing-zone requirements. Two of these zones, sufficiently sep-
arated to insure no meteorological correlation yet available on the same
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orbital track, were designated as the primary and backup landing zones.
These selected zones also allowed for contingency landings in the Guif of

Mexico.

A ground advisory station would be located in each of the two landing
zones to exercise advisory control during the parachute descent, either in the
event of cloud cover or at night. The station would provide weather obser-
vation and wind measurement, record and display spacecraft telemetry sig-
nals, and relay the spacecraft communications to the Mission Control

Center.

During the final orbital phase, the preferred landing zone would be
selected based on surface winds and cloud cover. Once the zone was deter-
mined, a reentry maneuver, programed to allow main parachute deployment
over that zone, would be executed. Following the main parachute deployment
and attitude repositioning, the flight crew would evaluate the available landing
area within the zone, select the desired touchdown point, maneuver to it,

and land.
FULL-SCALE SYSTEM TESTING AND ANALYSES

The test program was conducted in two phases. The first phase con-
sisted of nine developmental air drops, in which the vehicle landed in the
water without the mechanical landing gear; and two crane drops, including
the landing gear, were conducted over land. The water landing site was
selected to protect the test vehicle before the addition of the rockets, and
during the verification of ignition altitude. These tests also demonstrated
water landing capability. Once the system was integrated and verified, the
test location was shifted to Fort Hood, Texas, to provide a land site. At this
location, the second-phase test program, consisting of three land landings,
was conducted.

Test Procedure

The Gemini spacecraft reentry conditions were simulated as closely as
possible on all tests by releasing the vehicle from the drop aircraft with the
R and R canister mated; and the test system was allowed to begin its descent
on the static-line-deployed drogue parachute (fig. 6). All the events which
followed were initiated either by a sequence programer Or by a radio com-
mand.
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As the test vehicle passed through nominal Gemini spacecraft deploy-
ment altitude, the R and R canister was jettisoned pyrotechnically, which
automatically deployed the Para-Sail. The drogue parachute provided the
force for the separation of the R and R canister and the extraction of the
main parachute, and also recovered the R and R canister.

During the deployment and the inflation of the Para-Sail, the test vehi-
cle remained oriented in the heat-shield down, or reentry, attitude, with the
parachute attached to a single point on the nose-gear disconnect pallet (fig. 7).
To further simulate the actual spacecraft flight, the test vehicle remained
suspended in this attitude for a short time interval which theoretically would
allow the flight crew to inspect the parachute through the hatch windows and,
in the event of malfunction, eject from the favorable reentry attitude. At the
end of this interval, the test vehicle was repositioned by releasing the riser
group pyrotechnically at the single-point attachment and allowing the vehicle
to tip over to the flying, 13° nose down, attitude (fig. 8).

In the flying attitude, the vehicle was suspended by the bridle system
shown in figures 8 and 9. The rear half of the canopy was connected to
hardpoints located on each side of the vehicle just forward of the heat shield,
and the front half was connected to the confluence of a V-bridle. The for-
ward leg of the V-bridle was attached to the nose-gear disconnect pallet, and
the aft leg was connected to a hardpoint located in the center strip-out chan-
nel.

In tests which incorporated the rocket motors, a mechanical blast de-
flector was added as a test safety device. The blast deflector (fig. 10) was
employed to cancel the rocket thrust and vent the exhaust gases, if inad-
vertent firing occurred while the test vehicle was in the launch aircraft.
During drop tests, the blast deflector was jettisoned pyrotechnically shortly
after attitude change and was recovered by a separate parachute.

In the normal drop sequence, the turn system was verified immediately
following blast-deflector jettison. The turn motors, located in the Paraglider
Control System (PCS) hatch beam just forward of the heat shield, were acti-
vated by radio command signals sent from a ground console (fig. 11).

The next programed event was deployment of the altitude sensors, either
the MSC interim sensor or two deHavilland self-extending probes. Following
deployment, the microswitch positions were checked by built-in inspection
circuitry, prior to final arming of the rocket- firing circuits. When the turn
potential and altitude-sensor deployment were verified, the mechanical landing
gear was deployed by radio command, which completed the preparation
sequence and placed the system in the final landing mode.
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In the last 8000 feet of descent, the test system was maneuvered to the
landing area and was faced into the wind near the surface. Since the system
was normally released upwind of the target area, 1-1/2 to 2 miles of range
capability were available. Wind drift was determined during descent by ob-
serving the system visually from the command console station.

When the altitude sensor contacted the landing surface, the micro-
switches closed, firing the rocket motors and decelerating the test vehicle
(fig. 12). The test vehicle then landed on the mechanical gear at the reduced
vertical velocity and dissipated any horizontal velocity in slideout (fig. 13).
As the main landing gear stroked, it activated a disconnect system which
jettisoned the parachute to prevent ground drag. In tests where the rockets
were fired during a water landing (fig. 14), the mechanical gear was not
included, and the parachute was jettisoned by a salt-water-activated switch.

The test system also included a radio-command-actuated emergency
system to recover the test vehicle in the event of main parachute failure. The
radio signal actuated the emergency programer which immediately jettisoned
the main canopy, by releasing the riser attachments and severing the turn
cables. A drogue gun fired 0.8 second later, deploying a 6-foot pilot para-
chute which extracted and deployed an 84-foot ringsail parachute. All subse-
quent programed events were locked out automatically by the emergency
signal.

Test Instrumentation and Sequencing

Data collection. - The data collection system employed during the full-
scale tests consisted of 43 dynamic measurements, 5 real-time control-
function displays, 6 radio-command channels, and an onboard television sys-
tem which was monitored real time and recorded on video tape.

The basic telemetry measurements included:

Total riser loads

Individual riser loads

Turn-line forces, position, and commands
Three axis accelerations, linear

Angular accelerations, pitch axis

Impact accelerations, three axes
Thrust-line accelerations

Ambient pressure

Ambient temperature at the rocket nozzles
Yaw angular rate

Roll angular rate
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Pitch angular rate
Rocket-chamber pressures
Event records

These telemetered data were picked up at the mobile ground station by
two receivers and recorded on magnetic tape. These tapes were then dis-
criminated and digitized. An analog-oscillograph record was printed for
preliminary evaluation; then the digitized tapes were fed through a computer
which reduced, tabulated, and plotted the results. (A detailed description of
the data collection system is contained in Volume II, Section XI.)

Photographic coverage. - Initially, four motion-picture cameras were
located on board the test vehicle. Two periscope cameras were added later.
All cameras were started by the Sequence programer, and imprinted with
100-cps timing lights furnished by a central time-pulse generating system.
These cameras were as follows:

1. A 16-mm gun-sight aiming point (GSAP), set at 64 frames/sec. It
was located in the cylindrical section, and recorded the parachute deploy-
ment.

2. A 16-mm Milliken, set at 24 frames/sec. It was located on the
upper side of the vehicle just forward of the right hatch, and recorded the
parachute after attitude change.

3. A 16-mm Milliken, set at 24 frames/sec. It was located on the
underside of the vehicle near the heat shield, and was pointed down at the
ground, after attitude change. (The same field of view was covered by the
television camera. )

4. A 16-mm Milliken, set at 24 frames/sec. It was located so that it
duplicated the command pilot field of view through the hatch window.

5. A 16-mm GSAP, with periscope, set at 64 frames/sec. It was
located in the top cylindrical section and recorded the riser and the turn-line
strip-out.

6. A 16-mm GSAP, with periscope, set at 64 frames/sec. It was
located in the bottom cylindrical section, and recorded the blast-deflector
jettison and the altitude-sensor deployment.

Nine exterior motion-picture cameras recorded the tests. The cameras
were time-correlated by a large flashbulb mounted at the rear of the drop
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aircraft, and the bulbs fired automatically when the vehicle was released.
These cameras were as follows:

1. Two 16-mm Millikens, set at 100 frames/sec. They were mounted
overhead in the drop aircraft and recorded the launch.

9. Two 16-mm Millikens, set at 100 frames/sec. They were operated
from a (high-altitude photography) chase aircraft, and recorded the launch,
the deployment, and the attitude repositioning.

3. One 16-mm Milliken, set at 100 frames/sec. It was operated from
a (low-altitude photography) chase helicopter, and recorded the final descent
and the landing.

4. Three 16-mm Millikens, two set at 24 frames/sec, and one with a
long-range lens set at 100 frames/sec. All the cameras were operated from
the landing surface, and recorded the entire descent and the landing.

5. One 70-mm Hulcher tracking camera, set at various frame speeds.
It was operated from the landing surface, and recorded the landing.

Sequencing. - The sequencing system was employed to control automat-
ically the events that were required to function in a specific order and at a
precise time. Mission events were obtained through the initiation of pyro-
technically actuated hardware. Two identical sequencing systems were
employed for total redundancy. Each of these systems featured monitoring
circuitry to facilitate pretest verification, circuit interrupters which allowed
shorting of installed pyrotechnics until the drop run, and inspection and lock-
out circuitry which verified the altitude-sensor and rocket-firing circuits in
flight, just prior to rocket arming. (A detailed presentation of sequencing,
circuitry, and checkout procedures is contained in Volume II, Section XIL.)

Test Descriptions

Fach of the 14 full-scale tests marks a milestone in the development
program; and, as such, each test warrants individual attention. This portion
of the report describes each test in detail, including specific objectives,
onboard systems, landing weight and center-of-gravity location (where appli-
cable), and a brief description of results.
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TEST 1 - TRINITY BAY, FEBRUARY 2, 1964

Objectives

This was the initial test in the full-scale series. In addition to verify-
ing the cradle drop method, it had the following specific objectives: to
verify the R and R canister drogue and separation systems, to verify Para-
Sail deployment from the separated R and R canister and measure opening
loads, to verify the 1/3-scaled model results with regard to system dynamics
during attitude change, and to verify the 1/3-scaled model results with re-
gard to steady-state suspension attitude and stability.

Onboard Systems

The onboard systems included an 18-ft ringsail drogue, reefed to
13 percent for 10 seconds; an R and R canister Separation mechanism; an
attitude-change-disconnect mechanism; and an 80-ft dO Para-Sail, reefed

to 12. 3 percent, with a 1000-pound reefing line with 6-second cutters.

Sequencing
Release, sec . . . ... ... .. . .. . .. . 0
R and R canister Separation, sec .. .. .. .. +8
Attitude change, sec . . ... ... ... . "~ +25

Landing Weight

The landing weight of the test vehicle was 3972 pounds.
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Results

Although the drop method, using a gravity-activated launching cradle,
imparted a high tumble rate to the vehicle as it left the aircraft, the reefed
drogue essentially had stabilized the system at R and R canister separation.
The Para-Sail deployed satisfactorily from the separated R and R canister
and disreefed evenly. Attitude change was accomplished with no difficulty,
and the canopy/vehicle combination was completely stabilized in slightly less
than 8 seconds. The total system was extremely stable during descent, with
no discernible oscillation. The vehicle suspension attitude was approximately
horizontal. The steady-state rate of descent was 19 to 20 ft/sec. All test
objectives were met.

TEST 2 - TRINITY BAY, APRIL 8, 1964

Objectives

The turn motors were added to the system for this test. Turn-line
length was set by ground-inflating the parachute and marking link zero, then
adding 19 inches for riser elongation (measured by suspending the test vehi-
cle from two cranes). Turn-line length determination will be discussed in
detail under Results. In additionto validating the operation of the turn motor and
command systems, this test had the following objectives: the investigation
of the dynamic behavior of the system during maneuvering in flight, the at-
tempted correlation with the 1/3-scaled model results, and the investigation
of turn rate, turn-line length, force, and travel.

Onboard Systems

The onboard systems included an 18-ft ringsail drogue parachute, reef-
ed to 13 percent for 10 seconds; R and R canister separation and attitude
change mechanisms; and 80-ft d0 Para-Sail, reefed to 12. 3 percent, with a

1000-pound reefing line with 6-second cutters; radio-command-actuated turn
motors, with 21 inches of travel (Aircraft Armaments, Inc. ); an 84-ft ring-
sail emergency parachute system (radio commanded); and an impact-switch
canopy-disconnect system.
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Sequencing

Release, sec . . ... .. ... ... . . . ... . 0
R and R canister Separation, sec ... ... . .. +8
Attitude change, sec . . ... ... .. .. . | +25
Activate turn motors, sec . ... .. .. ... . . +35
Disconnect parachute and cut turn lines . . . . . . Impact

Landing Weight

The landing weight of the test vehicle was 4760 pounds.

Results

The initial sequence of events occurred as programed. The vehicle
separated from the launch aircraft, stabilized on the drogue, and the R and R
canister separated cleanly, deploying the Para-Sail. Just prior to full reefed
inflation, the reefing line failed structurally, and the Subsequent loading,
caused by premature disreef, failed several Para-Sail suspension lines. The
test was aborted at T + 22 seconds, and the emergency command was trans-
mitted to the vehicle. The emergency system separated the damaged Para-
Sail and deployed the recovery parachute. The test vehicle descended at
approximately 30 ft/sec and impacted without damage. None of the test ob-
jectives were met. The test did Serve the unplanned purpose of validating the
emergency system.

TEST 3 - TRINITY BAY, APRIL 29, 1964

Objectives

This test was scheduled as a repeat of test 2 and had the same objec-

tives. The reefing line was replaced with a stronger one, and drogue time
was shortened to reduce deployment dynamic pressure.
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Onboard Systems

The onboard systems included an 18-ft ringsail drogue, reefed to
13 percent for 10 seconds; R and R canister separation and attitude-change
mechanisms; an 80-ft do Para-Sail, reefed to 12.3 percent, with a

2000-pound reefing line with 6-second cutters; radio-command-actuated turn
motors, with 21 inches of travel ; and an impact- switch canopy-disconnect
system.

Sequencing
Release, SEC . « + « o+ o+ s om ot oms 0
R and R canister separation, sec . . . . . . - - +5
Attitude change, sec . . . . « - - s oo . +25
Activate turn motors, sec . . . . . . .- - e +35
Disconnect parachute and cut turn lines . . . . Impact

Launch Conditions

Altitude, ft . . . - . o o oo e 11 100
Velocity, KIAS . . . o+« o o oo oo oo e e 127
Dynamic pressure at R and R canister separa-

tion (calculated), 1b/ft2 ............ 40

Landing Weight

The landing weight of the test vehicle was 4760 pounds.

Results

All systems functioned correctly, with normal parachute inflation and
disreef. Following attitude change, the turn system was activated, and
both left and right turns were verified as furnishing rates of turn of 10 to
12 deg/sec. Approximately D seconds were required for the system to accel-
erate to a steady turn rate. During turn, the canopy/vehicle combination
panked 10 to 15° and pitched nnse down 10 to 15°. When the turn was re-
leased, the system reoriented to the stable flight attitude in 3 to 4 seconds.
Turn-line forces were approxirnately 80 pounds, with peaks up to 108 pounds.
The test vehicle was maneuverad approximately 1-1/2 miles crosscountry to

the primary target area and faced into the wind, prior to impact. The vehicle
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landed approximately 50 yards from the aiming point at target center. All
test objectives were met. Figure 15 shows the system at the moment of
impact.

TEST 4 - TRINITY BAY, MAY 14, 1964

Objectives

The interim altitude sensor was added to the system for this test, and
flashbulbs were used to simulate rocket ignition. In addition to the verifica-
tion of the deployment and performance of the interim sensor, this test had
the following objectives: the continuation of the flight dynamics investigation,
the measurement of the firing circuitry lag from signal, and the evaluation of
the larger drogue parachute (simulated by using 22-ft d0 ringslot with in-

creased reefing percentage).

Onboard Systems

The onboard systems included a 22-ft do ringslot drogue, reefed to

19 percent for 10 seconds ; Rand R canister separation and attitude-change
mechanisms; an 80-ft dO Para-Sail, reefed to 12.3 percent, with a

2000-pound reefing line with 6-second cutters; radio-command-actuated turn
motors, with 21 inches of travel ; an 84-ft d0 ringsail emergency parachute

system (radio commanded); an interim altitude sensor; and an impact-switch
canopy-disconnect system.

Sequencing

Release, sec . .. ........... . 0
R and R canister Separation, sec .. . . +5
Attitude change, sec .. ... ... .. +25
Deploy altitude sensor, sec . . ... . . +35
Activate turn motors, sec . . ... ... +40
Arm altitude sensor, sec ... .. ... +55
Fire flashbulbs . . ... ... ... . . Sensor closure
Disconnect parachute and cut

turnlines . ............. . Impact
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Launch Conditions

Altitude, ft . .« o o e e e e e e e 11 000
Velocity, KIAS . .« v v v o oo v oo oo m me 127
Dynamic pressure at R and R

canister separation (calcu-

lated), To/f2 e 40

Landing Weight

The landing weight of the test vehicle was 4791 pounds.

Results

All systems functioned satisfactorily. One minor malfunction occurred
which did not compromise test objectives. At attitude change, the forward
V-bridle leg-load cell failed structurally, causing approximately a 20° nose-
down suspension attitude. The higher extraction ratio caused by the larger
drogue did not affect parachute deployment. Altitude-sensor deployment was
satisfactory and closely resembled the static deployment tests.

The turn system was activated, and both left and right turns were veri-
fied as furnishing turn rates of 10 to 12 deg/sec. The test system was ma-
neuvered approximately 2 miles crosscountry and faced into the wind, before
landing approximately 40 yards from the center aiming point in the primary
target zone. The flashbulbs, simulating the rocket motors, fired at altitude
sensor closure. Within the accuracy of the measuring equipment, the firing-
train time delay was established at just under 10 milliseconds.

TEST 5 - TRINITY BAY, MAY 26, 1964

Objectives

This test continued the investigation of descent dynamics and interim
altitude-sensor performance. Inan effort to obtain higher rates of turn, the
turn motors were modified to provide 42 inches of travel. Specific objectives
included the evaluation of increased turn-line travel and the resulting system
dynamics.
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Onboard Systems

The onboard systems included a 22-ft dO ringslot drogue parachute,

reefed to 19 percent for 10 seconds; R and R canister separation and attitude-
change mechanisms; an 80-ft d0 Para-Sail, reefed to 12.3 percent, with a

2000-pound reefing line with 6-second cutters; radio-command-actuated turn
motors, with 42 inches of travel; an 84-ft dO ringsail emergency parachute

system (radio commanded); an interim altitude sensor; and an impact-switch
canopy-disconnect system.

Sequencing

Release, sec . ... .. ......... 0
R and R canister separation, sec . . . . . +5
Attitude change, sec . ..... .. ... +25
Deploy altitude sensor, sec . ... ... +35
Activate turn motors, sec . .. ... . . +40
Arm altitude sensor, sec . ... .. ... +55
Fireflashbulbs . . ... ... ... ... Sensor closure
Disconnect parachute and cut

turnlines . ... ... ......... Impact

Altitude, ft . . . . ... ... .. ... ..... . 11 100
Velocity, KIAS . . . . ... ... ... ...... 127
Dynamic pressure at R and R

canister separation (calcu-

lated), Ib/it% . ... .. ... 40

Landing Weight

The landing weight of the test vehicle was 4761 pounds.

Results
All systems functioned satisfactorily with one exception; at attitude
change, the right turn line failed structurally, ruling out any use of right turn
during the test. The left-turn system performed satisfactorily, although the
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steel cable guide damaged the cable. A left turn of approximately 20 deg/sec
was obtained. As predicted by the 1/3-scaled model tests, and seen in earlier
full-scale tests, the vehicle banked out and rotated nose down during turn.

Altitude-sensor deployment and arming were satisfactory. Using only
the left-turn potential, the test vehicle was maneuvered approximately 1 mile
crosscountry to the primary target area and faced into the wind. Impact
occurred approximately 90 yards from the center aiming point. The flash-
bulbs, simulating the rocket motors, fired on sensor closure. Measurements
again indicated that the firing-train time delay was approximately 10 milli-
seconds. The landing acceleration was below the 5g setting on the impact
switch, and the canopy was disconnected by radio command. Figure 16 shows
the test system during flight.

FULL-SCALE CRANE DROP1 -
ELLINGTON AIR FORCE BASE, TEXAS, JULY 31, 1964

Objectives

Prior to incorporation of the landing rockets into system drop testing, a
full-scale crane drop of the test vehicle, with the landing rockets and landing
gear, was conducted to allow evaluation of system performance under closely
controlled conditions. Specific objectives of this test included the following:
the verification of the analytically determined ignition altitude, the verifica-
tion of the 1/3-scaled model impact g-time histories, the measurement of
loads in landing gear structural members, and the verification of the
thrust /vehicle center-of-gravity alinement method and alinement accuracy.

Onboard Systems
The onboard systems included an interim altitude sensor, the Gemini
spacecraft landing gear (predeployed), the landing rockets, and a backup
rocket ignition system.
Sequencing
The sequencing system included an altitude sensor, predeployed and

remotely armed; rockets remotely armed; vehicle release accomplished by
hardline signal; and rockets fired on altitude-sensor closure.
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Launch Conditions

, The vehicle was suspended in the correct landing attitude and with suf-
ficient height to furnish nominal 80-ft d0 Para-Sail descent velocity of

25 ft/sec at altitude-sensor closure. The impacting surface was 1/2-inch
steel plate over concrete. The nose landing gear was pressurized to

225 1b/in. 2, and the main gear hydraulic dampers were pressurized to

500 1b /in. 2 . A lanyard block was attached and adjusted, so that it would ac-
tuate the rocket-firing circuits 12 inches below the height of altitude-sensor
contact in the event of altitude-sensor failure. Data were recorded by means
of a direct umbilical from the vehicle to an oscillograph.

Landing Weight

The landing weight of the test vehicle was 4690.5 pounds.

Center-of-Gravity Location

The center of gravity of the test vehicle was Z = 131.79, X = +0.048,
and Y =-1.79.

Results

The drop sequence is presented in figure 17. Figure 17(a) shows the
test vehicle just after release, with the interim sensor and landing gear pre-
deployed. Figure 17(b) shows the system in free fall just prior to rocket
ignition. Note that the altitude sensor is 18 to 20 inches above the surface.
Figure 17(c) shows rocket-motor ignition, and 17(d) shows high thrust. Dur-
ing high thrust, the vehicle experienced a 5° change in pitch attitude, which
was attributed to mechanical deflection of the rocket support structure. Fig-
ure 17(e) shows the test vehicle just after touchdown and gear stroke.

Nominal velocity, acceleraticn, and roll attitude were achieved, and the
descent velocity at touchdown was 7 ft/sec. Maximum accelerations meas-
ured in the Y-axis were 3.89g at rocket peak thrust and 3.90g at impact. When
these accelerations are compared with flight-test results, the 1g that the
pilot would feel during parachute descent must be added to the peak rocket
thrust. Impact accelerations are directly comparable. Touchdown occurred
prior to tail-off of the low thrust level, as programed. Visual inspection of
landing gear components after the test revealed no evidence of heat damage.
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Conclusion

Ignition altitude was correct, and thrust alinement was within tolerance.
Accelerations were controlled below a level of 5g, as predicted by the scaled-
model tests. All test objectives were met. The motor support structure was
stiffened following this test.

TEST 6 - TRINITY BAY, OCTOBER 16, 1964

Objectives

This test incorporated the landing rockets into the drop-test program.
To provide realistic system data, the altitude for ignition was set as for a
land landing. (In a water landing, with the landing gear stowed, this setting
is approximately 2 feet higher than optimum.) In addition to the verification
of rocket-motor performance, this test had the following objectives: the
verification of the blast-deflector jettison and recovery systems, the evalua-
tion of g-time histories during rocket fire and impact, the evaluation of
thrust/vehicle center-of-gravity alinement, the continued evaluation of system
dynamics, and the demonstration of water landing capability.

Onboard Systems

The onboard systems included a 22-ft d0 ringslot drogue parachute,

reefed to 19 percent for 10 seconds; R and R canister separation and attitude-
change mechanisms; an 80-ft do Para-Sail, reefed to 12.3 percent, with a

2000-pound reefing line with 6-second cutters; radio-command-actuated turn
motors, with 42 inches of travel; an 84-ft d0 ringsail emergency parachute

system (radio commanded); an interim altitude sensor; a blast deflector,
jettison mechanism, and recovery system; landing rockets; and a salt-water-
activated switch for parachute disconnect.

Sequencing
Release, SEeC « « « o o ot o o o o o o 0 s e s e e e 0
R and R canister separation, sec . . . . .. .. . . . +5
Attitude change, sec . . . . . . . o o oo e e +25
Blast-deflector jettison, sec . . . . . . ¢« .« oo 0. +40
Deploy altitude sensor, sec . . « « « « « « o o - ... +55
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Activate turn motors, sec . ... .. .. +65

Arm altitude sensor, sec . . ... .. . . +75
Arm rocket motors, sec . . ... .. .. +95
Firerockets . .. .. ... ....... Sensor closure
Disconnect parachute and cut

turnlines . . .. ... ... ...... Impact

canister separation (calcu-
lated), /et . ... ... ... ... 40

Landing Weight

The landing weight of the test vehicle was 4768 pounds.

Center-of-Gravity Location

The center of gravity of the test vehicle was X =+40.19, Y =-1.62, and
Z = 132.3.

Results

All systems functioned correctly through attitude change, blast-deflector
jettison, andaltitude-sensor deployment. When the turn motors wereactivated,
the parachute did not respond. Investigation later proved that the turn lines
were too short, which overloaded the motors, causing the fuses to blow. The
same method of setting the turn-line length had been employed for this test,
as with the one parachute used for all previous tests, but the method proved
to be ineffective due to differences in suspension line elongations.

The test system made a long gliding descent and impacted crosswind,
approximately 2-1/2 miles from the primary target area. The rocket motors
fired at altitude-sensor closure, decelerating the vehicle prior to impact.
Maximum accelerations recorded were approximately 4.8¢g. There was no
discernible change in the attitude of the test vehicle during rocket firing,

which indicated a correct thrust/center—of—gravity alinement. Figure 14
shows the system during rocket high-thrust burning.
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TEST 7 - TRINITY BAY, DECEMBER 11, 1964

Objectives

This test incorporated the improved version of the T0-ft d0 Para-Sail

and the deHavilland altitude sensor into system testing. Specific objectives
of this test included the following: the evaluation of system performance
with the improved parachute configuration, the evaluation of the deHavilland
altitude sensors, and the determination of system dynamics during rocket
firing and impact.

Onboard Systems

The onboard systems included a 22-ft d0 ringslot drogue parachute,

reefed to 19 percent for 10 seconds; R and R canister separation and attitude-
change mechanisms; a 70-ft do Para-Sail, reefed to 12.35 percent for

8 seconds; radio-command-actuated turn motors, with 42 inches of travel;
an 84-ft dO ringsail emergency parachute (radio commanded); two

deHavilland altitude sensors; 4 blast deflector, jettison mechanism, and
recovery system; landing rockets; and a salt-water-activated switch for
parachute disconnect.

Sequencing

Release, SEC « « » o « = « = o o o = o2t 0
R and R canister separation, sec . . . . . +5
Attitude change, sec . . . . « -« . o oo +25
Blast-deflector jettison, sec . . . . . . . - +40
Deploy altitude sensor, sec . . . . . . - - +55
Activate turn motors, sec . . . . . . . . - +60
Arm altitude sensor, sec . . . . . o . . +75
Arm rocket motors, sec . . . . . . oo .- +95
Fire rockets . . « o « o o o oo oo oo e Sensor closure
Disconnect parachute and cut

turn 1ines .+ v o ¢ o v e e e e e e e e e e Impact
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Launch Conditions

Altitude, ft . . . . . .. ... ... ... ..., 7000
Velocity, KIAS . . ... ... .......... 127
Dynamic pressure at R and R

canister separation (calcu-

lated), Ib/Bt2 . . . . . .. .. .. ... 40

Landing Weight

The landing weight of the test vehicle was 4747 pounds.

Center-of-Gravity Location

The center of gravity of the test vehicle was X = +0.1402, Y = -1.822,
and Z = 130.78.

Results

All systems functioned correctly through attitude change, blast-deflector
jettison and recovery, and altitude-sensor deployment. One deHavilland sen-
sor bent near the root and trailed approximately 15° aft. When the turn
motors were activated, the system did not respond. Investigation later indi-
cated that the turn cables failed structurally at attitude change, due to tensile
load and possible fouling. The system made an uncontrolled, spiral descent,
and impacted approximately 200 yards from the target area. The rockets
fired at altitude-sensor closure, decelerating the vehicle prior to impact.
Again, the nearly constant attitude during rocket firing indicated correct
thrust/center-of-gravity alinement.

TEST 8 - TRINITY BAY, JANUARY 14, 1965

Objectives

Due to successive failures in the turn system, the test order was
changed at this point. Prior to this test, a series of static attitude-change
tests was conducted to determine riser and turn-line strip-out characteristics.
At the same time, an intensive analytical effort was conducted to determine
actual zero turn length for the advanced version of the Para-Sail. As a result
of these studies and tests, turn-line length was increased 18 inches, and the
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lines were stowed alongside, but separate from, the main riser bundle in the
strip-out channel.

The objectives of this test were to evaluate the modified means of turn-
line stowage, to acquire additional turn-motor force-travel and turn-line-
length data, and to acquire more controlled flight experience with the 70-ft
d0 Para-Sail.

Onboard Systems

The onboard systems included a 22-ft d0 ringslot drogue parachute,

reefed to 19 percent for 10 seconds; R and R canister separation and attitude-
change mechanisms; a 70-1t do Para-Sail, reefed to 12.35 percent for

8 seconds; radio-command-actuated turn motors, with 42 inches of travel;
an 84-ft do ringsail emergency parachute (radio commanded); andanimpact-

switch canopy-disconnect system.

Sequencing
Release, SEC « « o o o o o v o 0 o s o o o v oo 0
R and R canister separation, sec . . . . . . . . +5
Attitude change, Sec . .« « « . o o e e e +25
Activate turn motors, sec . . . ¢ ¢ o 0 o0 .. +35
Disconnect parachute and cut
turn 1ines . . ¢« v ¢ v ¢ o 0 e e s e e e e e e Impact

Altitude, ft . - . o o o e e e e e e e 11 400
Velocity, KIAS . . . ¢ . ¢ v v v v v oo oo v v 127
Dynamic pressure at R and R

canister separation (calcu-

lated), Tb/Et2 « v v e e e 40

Landing Weight

The landing weight of the test vehicle was 4543 pounds.
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Results

All systems functioned correctly. Although both turn lines were set at
the same length, the parachute exhibited a built-in left turn of approximately
25 deg/sec. With the right-turn motor, it was possible to trim the built-in
turn, or overpower it, and obtain a right-turn rate of 14 to 15 deg/sec. The
maximum left-turn rate obtained was 40 deg/sec. Several turns were execut-
ed in flight, and the vehicle was maneuvered into the primary target area
and faced into the wind prior to impact. Examination of the turn-motor cables
after the test indicated evidence of wearing and fraying. All test objectives
were met.

TEST 9 - TRINITY BAY, FEBRUARY 25, 1965

Objectives

The objectives of this test were to evaluate the effect of increased turn-
line length and acquire additional force-travel data. This test also served as
a final rehearsal on release point/maneuvering accuracy for the land landing.

Onboard Systems

The onboard systems included a 22-ft do ringslot drogue parachute,

reefed to 19 percent for 12 seconds ; Rand R canister separation and attitude-
change mechanisms; a 70-ft do Para-Sail, reefed to 12.35 percent for

6 seconds; radio-command-actuated turn motors, with 42 inches of travel ;
an 84-ft do ringsail emergency parachute (radio commanded); and an

impact-switch canopy-disconnect system.

Sequencing
Release, sec . . . ... ... ... ... .. .. . 0
R and R canister separation, sec . ... ... .. +5
Attitude change, sec . . .. .. ... ... .. | +25
Activate turn motors, sec . . . . ... ... ... +35
Disconnect parachute and cut
turnlines . . ................. . Impact
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Launch Conditions

Altitude, ft . . o v o o o e e e e 11 200
Velocity, KIAS . . . « v o v o v o oo oo m e e 128
Dynamic pressure at R and R

canister separation (calcu-

lated), To/EE2 o v e e e 40

Landing Weight

The landing weight of the test vehicle was 4735 pounds.

Results

This drop was made in very high winds aloft, and with approximately
15 knots of surface wind. All systems functioned correctly. The new 70-ft
d0 Para-Sail used on this test had a 12 to 15 deg/sec built-in turn to the left.

For this test, as in test 8, the turn lines were set at equal lengths. Approxi-
mately 40-percent travel of the right motor counteracted the built-in turn,
while full right travel furnished a 6 to 8 deg/sec right turn. Full left turn,
coupled with the built-in turn, resulted in a 45 to 50 deg/sec turn rate and
high bank and pitch angles.

The test vehicle was approximately 1200 yards east (downwind) and
2500 yards north of the target when the turn system was activated. The
canopy was immediately faced into the wind but could not advance toward the
target. By heading the canopy at an oblique angle to the target, the north to
south distance was compensated for, but only a slight gain was made to the
west, due to the high winds. The system impacted approximately 1000 yards
downwind from the primary target area.

The turn-line load data indicated that the left line should be lengthened
14 inches, and the right line should be lengthened 8 inches for this particular
parachute. Since this parachute was to be used for the first land drop, this
modification was made. Tests 8 and 9 validated the turn-line length and stow-
age, and concluded the water landing phase.
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‘Landing Accuracy and Wind Alinement

In the evaluation of the system's ability to be maneuvered to a specific
landing point, it must be recognized that a basic difference existed between

trol. In an orbital flight case, reentry would be pbrogramed so that the main
parachute opening would occur over a previously selected landing zone. Fol-
lowing main parachute opening, the flight crew would select their landing
area, based on obstacles, wind profile, and so forth, and maneuver toward it.
As the spacecraft descended, the crew would continuously reevaluate their
attainable landing area and select the touchdown site. Below 500 feet, the
spacecraft must maintain wind alinement, and hence would be committed to a
landing point.

For unmanned tests in which the vehicle wags maneuvered by ground
radio command, the test area was selected first. The test vehicle was then
released from the drop aircraft at a point in space which allowed the System
to be maneuvered into the landing zone. A small target or aiming point was
normally placed in the center of the primary zone. The accuracy data were
concerned with the distances from the actual landing spot to the target. It was

realized that landing dispersion resulting from drop testing was also affected
by release-point accuracy. During the test programs, the release-point ac-

In unmanned drop testing, the means of determining wind drift also
differed from the orbital-reentry case. A descending flight crew would have a
true picture of wind drift at all times since the crew would be looking down
from the spacecraft. A test controller, located on the ground, was severely

As determined by the 1/3-scaled-mode] impact dynamics studies, the
landing gear stability envelope was bounded in yaw by + 15°, In terms of wind
alinement at touchdown, these results indicated that the System must be alined
with 15° of the wind for a stable landing. These criteria were used as a basis
for determining successfuyl alinement during tests. A variety of devices, pri-
marily flags and streamers, was yused to determine ground wind direction
when control was accomplished by visual observation. Ground drift, as deter-
mined through the television monitor, was used in the visual reference-system
study.
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Three basic development program phases were conducted which allow
accuracy and wind alinement data to be extracted. These were as follows:

One-third-scaled model test program of 25 drop tests.- One controller
pasically conducted all of the flights. Control was accomplished by observing
the system in the qir from a point on the ground near the target. During this
program, the controller experienced no difficulty in alining the vehicle with-
in 3 to 5° of the win _direction indicators. Asa measurement of accuracy,
as previously defined, the controller was able to aline with the wind and con-
sistently land the scaled-model spacecraft within an overall average of
150 feet from the target. As the controller grew more proficient toward the
latter part of the program, this landing dispersion was reduced from 150 feet
to 50 feet.

Visual reference-system program of 50 tests. - Many controllers were
employed. The only visual reference was the felevision receiver monitoring a
television camera mounted in the scaled-model vehicle. In this evaluation,
it was found that two or three flights were required before an adequate level
of proficiency was attained. After these flights, all the controllers were able
to determine wind drift, select a landing area, control the vehicle to that
area, and aline with the wind prior to touchdown. It was found during these
tests that satisfactory landings could be made in zones that were 60 percent
covered with obstacles. After the initial practice flights, these controllers
could aline consistently with the wind and land the scaled-model spacecraft
within 200 yards of the target. This test program most closely simulated
actual flight conditions; hence, the results were most significant.

Full-scale system test program of 12 tests. - One controller conducted
all of the flights. Control was accomplished by observing the system in the
air from a point on the ground approximately 1/2 mile from the target. Six
full-scale tests were conducted from which data could be drawn. One of these,
test 9, impacted approximately 1000 yards from the target due to a faulty
release point and high winds and was excluded from consideration. In the
remaining five tests, the controller experienced no difficulty in alining with-
in 5° of the wind-direction indicators when the control point was located near
the surface wind line. In the final test, the winds were very light (1 to 2 knots),
and wind direction varied over a wide range. The wind direction shifted ap-
proximately 100° between the time final alinement was initiated and touchdown.
At an altitude of approximately 100 feet, the controller could discern no side
drift and held the existing heading. The system touched down approximately
10° from downwind. Since the surface winds were very light, they were of
little significance. In all tests, the average landing point distance from the
target was slightly under 100 yards.
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From the results of these three investigations, the following conclusions
concerning wind alinement and accuracy were drawn. Wind alinement within
acceptable tolerances was readily accomplished. With proper training, re-
turning flight crews should be able to land the spacecraft within 200 yards of
a desired point on the ground. The scaled-model vehicle with the onboard

television system provided a valuable training tool.

Analysis of Results

This section is devoted to an analysis and summation of the results
presented in the foregoing section and the applicable component and scaled-
model results discussed in Volume II.

Parachute system. - The 70-ft d0 Para-Sail parachute (70A-5), devel-

oped during the brogram, satisfactorily demonstrated the performance re-
quired for a land landing of the Gemini spacecraft and could be qualified for
space flight.

Data for a nominal opening force-time history for this parachute when
it was employed with the land landing system, represented by a dotted line
infigure 24, were described. (Volume II, Section III contains a detailed dis-
cussion of the parachute opening history when the parachute is deployed at

both nominal (80 lb/ft2 and ultimate strength conditions. )

As shown in figure 24, the parachute met the 16 000-pound structural
limit on opening loads when deployed at nominal conditions. When deployed

at the emergency condition of 120 lb/ftz, the parachute exhibited an average
reefed opening shock value of 21 900 pounds occurring approximately 3.0 sec-
onds after initiation of deployment, decelerated to a constant velocity of

120 ft/sec prior to disreef, and followed a nominal force-time history there-
after.

System turn performance and motor requirements. - Studies and tests
conducted during the development program determined the desired turn per-

achieve this performance. A force of approximately 92 pounds was required
to furnish the maximum desired turn rate of 25 deg/sec (fig. 32), and
46 inches of travel are required to achieve this force (fig. 31).

With this turn potential, the system could be maneuvered to within

200 yards of a preselected point and landed with correct wind alinement. The
purpose here was to define the performance required from a flight turn-motor
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system based on the preceding discussions of turn rates, force and travel
requirements, motor speed, and trim. (A discussion of the mechanical de-
sign and functioning of the test turn motors is contained in Volume II, Sec-
tion VI, along with the conclusions reached concerning desigp problem areas.)

The turn motors shall employ dc power and provide a force to over-
come turn-cable loads from 0 to 250 pounds. Deflection of the controller sys-
tem shall provide a controlled reel-in of 6.0 + 0.3 feet in 6 + 1 seconds. The
motor design shall be such as to assure repeatable cable positions and smooth
feed. Reel-out shall be accomplished in as little time as possible, not to ex-
ceed one-half the takeup time. Positive braking shall be employed to hold the
commanded cable position at loads of from 0 to 500 pounds until the input
signal is changed. Cables must be capable of withstanding loads up to
1500 pounds when the takeup drum is bottomed out, or when the brake is
energized to furnish an adequate margin during the loading experienced at
attitude change.

The motor system shall provide the capability to trim a 15 deg/sec turn
rate. The 6 feet of travel previously specified is sufficient to provide the
trim capability and to furnish the desired range of turn rates.

Visual reference. - Volume II, Section VII presents a detailed discussion
of the visual reference investigation and defines the minimum acceptable sys-
tem requirements. In summary, the flight crew must be able to see the area
in which they might land and must have some means of determining wind drift.

Figure 41 presents the field of view from the command pilot's window in
the straight flight and the high-rate turn attitudes. It can be seen from the
figure that a high-rate turn maneuver does afford the command pilot a view
of the outer circumference of the possible landing area, but does not include
a view of the major portion of the zone. This is unacceptable since it does
not provide a view of the probable touchdown point, and because high-rate
turns cannot be accomplished near the surface. The minimum required field
of view, as determined during the development program, includes all possible
touchdown points in the direction the vehicle is heading (fig. 42).

Expected landing dynamics. - The results of the model and full-scale
test programs demonstrated that the landing rocket/landing gear combination
provided a stable land landing impact-attenuation system with accelerations
controlled to a magnitude of approximately 5g when landings were made with-
in the design envelope. This envelope was bounded by horizontal velocities
from 0 to 30 ft/sec; initial vertical velocities of approximately 30 ft/sec; and
limiting vehicle attitudes of + 15° in yaw, +10° in roll, and & 5° in pitch. It
should be noted that the landing gear was capable of landing with horizontal
velocities up to 100 ft/sec on a prepared surface.
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A comparison of the high- and low-horizontal velocity land landings
showed the peak accelerations to be the same order of magnitude in both
instances. Since these tests were made at the end points of the horizontal

resentative of the entire landing envelope. This conclusion was Substantiated
by the 1/3-scale landing dynamics tests which indicated peak accelerations
from 3g to 6g throughout the horizontal velocity envelope.

The slideout distance predicted by the scaled-model tests for the high-
horizontal velocity condition was 60 feet. This value Compared favorably
with the 55 feet of measured slideout in test 12.

In an uncontrolled landing which featured an extreme yawed condition
and /or rough terrain, the vehicle would probably tumble. Tumbling occurred
in the 1/3-scaled-model program when the vehicle exceeded 15° in yaw, and in
the full-scale pProgram when the vehicle landed in an uncontrolled turn. How-
ever, the peak accelerations recorded in landings where the vehicle over-
turned were on the order of 8g to 10g, which was well within acceptable crew
tolerance levels. Consequently, a flight crew could be expected to undergo,
without receiving injury, a landing in which the vehicle tumbled.

A double-rocket-motor failure would result in unacceptable accelera-
tions. The possibility of either motor failing was extremely remote, due to
the redundant ignition system and the high reliability of solid-propellant fuels.
Should one motor failure occur, the impact velocity of 18 ft/sec would exceed

the limits of the existing landing gear and possibly injure the crew. The

The landing gears originally developed for the paraglider were incorpora-
ted without change, and their operation was verified within the design landing
envelope. These gears were not optimized for this type of application and did
not necessarily represent the most efficient mechanical attenuation system. It

by the addition of the rocket motors. However, the accelerations experienced
at high thrust with the rockets were higher than the peak impact acceleration
without rockets. Based on this fact alone, it would appear that the water
landing case had been penalized rather than improved. Actually, considerable
improvement in the water landing case had been obtained.
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Design parameters for the existing Gemini spacecraft landing system
included a vertical descent velocity of 30 ft/sec, surface winds up to 51 ft/sec,
parachute oscillations of + 15° at a swing velocity of 14 ft/sec, and 9° wave
slopes. Tests conducted at these conditions by the spacecraft contractor indi-
cated vertical impact accelerations in the 12g to 16g range, with some meas-
ured peaks up to 22g (ref. 1).

The reduced accelerations experienced when the land landing system

made a contingency water landing were due to considerable reduction in the

governing parameters discussed. The descent velocity was reduced from

30 ft/sec to a nominal 8 ft/sec, and the horizontal velocity due to surface
wind was reduced from a maximum of 51 ft/sec to a maximum of 30 ft/sec.
The existing Gemini spacecraft parachute oscillated + 15°, and the swing
velocity thus created added to the resultant impact velocity. The gliding
parachute, used with the land landing system, exhibited a maximum of = 5°
oscillation and negligible swing velocities; hence this factor was removed
from impact considerations. Wave effect was greatly reduced by impingement
of the rocket exhaust on the water surface. Analysis of high-speed film cov-
erage of water landings indicated that the rocket exhaust had a cratering effect
which created a dish-shaped impact surface free of waves. In addition, the
high-speed agitation of the water surface by the rocket exhaust created afoam,
or froth, which effectively softened the surface by increasing the compres-
sibility.

Based on the results of the tests conducted during the development pro-
gram, the expected impact accelerations, when a contingency water landing
was made, were the same as those presented for a land landing. These ac-
celerations were approximately one-third of those expected with the existing
Gemini spacecraft landing system at the most adverse design conditions.

Rocket-thrust alinement. - At the beginning of the program, it was be-
lieved that alinement of the rocket-thrust line with the vehicle center of gravity
would present a major problem area, since any misalinement would create a
moment tending to upset the vehicle. The rocket mounts were designed (see
Volume II, Section VIII) to allow travel in both the roll and pitch axes to allow
precise alinement. The vehicle center of gravity was located prior to each
test by suspending the test vehicle in three planes and calculating the center of
gravity.

A special alinement fixture was designed to determine the thrust line
(Volume II, Section VIII). The plug end of the fixture was placed in the nozzle
(fig. 43), and the mounts were adjusted until the pointer physically coincided
with the center-of-gravity mark (fig. 44).
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Five air drops and two crane drops were conducted in which data on
thrust alinement could be drawn. This was done by monitoring pitch and roll
rates during rocket fire, and by a detailed analysis of high-speed test film
coverage. During crane drop I, a 5° pitch change occurred immediately fol-
lowing peak high thrust. Analysis indicated that this resulted from deflection
of the motor supports. These supports were structurally strengthened prior
to the other tests in which the rocket motors were employed. In every re-
maining test, analysis of the data and film coverage shewed no evidence of
vehicle motion due to thrust misalinement. It was concluded that the
thrust/center-of-gravity alinement method was successful, and that this area
did not present the degree of technical difficulty originally expected.

Soil erosion. - Erosion damage to the landing surface, due to impingement
of the rocket exhaust, and the subsequent effect on landing stability was recog-
nized as a problem area at the initiation of the program. It was not believed
that the high thrust level posed the major erosion threat since it occurred
while the vehicle was 6 to 8 feet above the surface; rather, it was believed that
low thrust occurring on or near the surface could create a stability problem.

To provide some insight into this phenomenon, two 1/3-scaled-model
tests were conducted to obtain quantitative erosion data. During the first test,
the scaled-model vehicle was placed on the compacted soil surface, and the
cold-gas system was activated at the low-thrust level while the vehicle re-
mained stationary. The simulated rockets eroded a crater 30 inches in diam-
eter and 8 inches deep (Vol. II, fig. II-10). This amounted to a displaced
surface volume of approximately 3.8 cubic feet.

In the second test, the model slid along the surface at a constant veloc-
ity of 3.62 ft/sec while the cold-gas system was activated at the low-thrust
level. The erosion rut created was approximately 8 inches wide, 2 inches
deep, and extended the total distance in which the simulated rockets fired
(Vol. II, fig. II-11).

Analysis of high-speed film coverage of these two tests indicated dis-
tinctly different erosive patterns. In the test with no horizontal velocity, the
crater was explosively formed as large chunks (approximately 6 inches in
diameter) were blown away; whereas, when horizontal velocity was present,
small particles were displaced and trailed aft in the high-velocity gas in a
much more gradual manner. From these tests, it was evident that erosion
surface damage could be significant during a purely vertical landing, and that
this significance would be considerably lessened at higher horizontal velocities
when slideout on the landing gear would occur.

To acquire full-scale information on erosion and resulting landing
stability in the vertical descent case, the full-scale test vehicle with the
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landing rockets and landing gear was dropped from a crane to a rain-saturated
sod surface. The erosion pattern closely resembled that of the first scaled-
model test since the surface was explosively blown away in large chunks
(approximately 1 cubic foot). The crater formed was 138 inches wide,

96 inches long, and 28 inches deep, as shown in figure 45. This amounted to
a displacement of approximately 205 cubic feet of soil. No adverse stability
effects were noted other than that the final attitude of the test vehicle included
approximately 5° roll because the left main gear was at the end of the crater.

In drop test 10, the vehicle had a low horizontal velocity but landed on
extremely hard, sun-baked soil. The erosion crater which was formed was
almost identical in length and width to the crane drop but was only 12 inches
deep due to a solid rock layer encountered at that depth. Since the vehicle
tumbled during this landing for other reasons, no information on stability
effect could be derived.

In test 12, the vehicle landed with a horizontal velocity of approxi-
mately 35 ft/sec. The landing surface showed no erosive effect resulting
from high thrust other than the removal of fine surface dust. During low
thrust, a narrow rut approximately 6 inches deep was formed (fig. 46). In
this test, landing stability was in no way affected.

These tests verified landing stability at the horizontal velocity end
points. Additional tests should be conducted to determine erosion and result-
ing stability effect at midrange velocities. The Manned Spacecraft Center is
currently conducting a comprehensive investigation of this phenomenon.

Weight summary. - The weights of the land landing system components
used during the development program are as follows:

Component Weight,
1b
Parachute (bag, risers, and so forth) . ... ... 153
Landing rockets (and mounts) . . . . . . . .. ... 60
Two altitude sensors (deHavilland) . . . . . . . .. 14
Visual system (fiber optics) . . . . . . . . . . . .. 12
Two turn-control motors . . . . . . .. . . . ... 20
Landing gears (installed) . . ... ... ... ... 310
Total 569

The weights listed are those of the test hardware components used to
develop and demonstrate the land landing system and do not represent flight
components in which serious weight reduction efforts have been exercised.
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FULL-SCALE CRANE DROP 1I -
ELLINGTON AIR FORCE BASE, TEXAS, MARCH 11, 1965

Objectives

This test was conducted to furnish a final verification of impactdynamics
under closely controlled conditions. It had the following additional specific
objectives: the verification of the stiffened rocket-motor support structure,
and the evaluation of soil erosion resulting from rocket impingement.

Onboard Systems

The onboard systems included the landing rockets, the predeployed
landing gear, the predeployed interim altitude sensor, and the lanyard-block
backup rocket ignition system.

Sequencing

The sequencing system included the rockets, remotely armed; the
altitude sensor, remotely inspected and armed; the vehicle release accom-
plished by hardline signal; the altitude-sensor closure; and the rocket fire.

Launch Conditions

The test vehicle was suspended in the nominal flying attitude from two
cranes at a height of 18.11 feet, which was sufficient to furnish a nominal
parachute rate of descent at sensor closure. The nose landing gear was

pressurized to 225 1b/in. 2 » and each of the main gear hydraulic dampers

was pressurized to 500 1b/in. 2. A backup lanyard block system was installed
which would ignite the rockets 12 inches below the height of altitude-sensor
contact in the event of altitude-sensor malfunction. Data were recorded by
means of a direct umbilical from the vehicle to an oscillograph.

Landing Weight

The landing weight of the test vehicle was 4751 pounds.
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Center-of-Gravity Location

The center of gravity of the test vehicle was X = +0.048, Y = -1.79,
and Z = 131.79.

Results

All systems performed correctly. The drop sequence is presented in
figures 18(a) to 18(g). Figure 18(a) shows the test setup. The interim
sensor is in the center of the figure. Figure 18(b) shows the system free-
falling, just prior to sensor closure. In 18(c), the precise moment of rocket
ignition is shown. Figure 18(d) to 18(f) represent the progressive sequence
of smoke and dust. Figure 18(g) shows the vehicle standing on the landing
- gear in the erosion crater as the smoke cloud dissipates.

Due to the absence of horizontal velocity, this test represented the most
severe landing condition from the standpoint of surface erosion (fig. 19). The
dimensions of the eroded crater were 132 inches wide, 96 inches long, and
28 inches deep. The surface blew out in large chunks. This was accounted
for by the high moisture content of the soil.

The peak thrust acceleration of 4.3g occurred at a height of just over
8 feet, immediately following sensor contact. The peak acceleration was
3.25g, well within design conditions. No noticeable change in attitude oc-
curred during rocket firing, again verifying proper thrust alinement with the
center of gravity of the vehicle.

Conclusions

The stiffening of the rocket-motor support structure following the first
crane drop resulted in elimination of thrust misalinement due to mount deflec-
tion. The test data further verified the analytical and the scaled-model re-
sults of the system dynamics. It also indicated that surface erosion, due to
rocket impingement, can be extensive at low horizontal velocities. Further
study is needed to determine the effect of surface erosion with higher hori-
zontal velocities, and operational procedures must be determined to satisfy
the relationship of the vertical descent with the type of sod used in the test.
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TEST 10 - FORT HOOD, TEXAS, APRIL 21, 1965

Objectives

This was the initial test of the system conducted over land. The objec-
tives were to evaluate system performance in flight and landing operations.

Landing Area

The selected test site was a mile-square tank assault range located on
the Fort Hood, Texas, military reservation. Figure 20 presents an aerial
view of the primary target area. In preparation for the test, the tank ruts
were leveled with a scraper blade in a 1/16-square-mile area in the center of
the zone. The command console station was located on the mound in the upper
center of the figure.

Onboard Systems

The onboard systems included a 22-ft d0 ringslot drogue parachute,

reefed to 19 percent for 12 seconds; R and R canister separation and attitude-
change mechanisms; a T70-ft do Para-8ail, reefed to 12.35 percent for

6 seconds; radio-command-actuated turn motors, with 42 inches of travel ;

an 84-ft ringsail emergency parachute (radio commanded); two deHavilland
altitude sensors; a blast deflector, jettison mechanism, and recovery system,
landing rockets; the Gemini spacecraft landing gear, retention system, and
deployment system; television and video-tape systems; and a gear-stroke
switch for parachute disconnect.

Sequencing

Release, sec . . . . . . . . v v v v v v v v i 0
R and R canister separation, sec . ... . . e e .. +5
Attitude change, sec . . . . . . ... ... ... ... +25
Activate turn system, sec . . . ... .. .. ..... +35
Blast-deflector jettison, sec . ... ......... +40
Altitude-sensor deployment, sec . .. ... ... .. +70
Landing gear retaining-strap

release, S€C . . . . v v vt v u e e e e e e +105
Landing gear deployment, sec . ... ........ +108
Disconnect switcharm, sec . . . .. ... .. .... +113
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Begin circuitry inspection, sec . . . .. +120

Arm rocket motors, sec . . . .. .. .. +150
Rocket ignition . . .. ... ... .. .. Sensor closure
Parachute disconnect . . . . . . . . . .. Gear stroke

Launch Conditions

Altitude, ft . . . . . . . . oo o000 oo 11 500
Velocity, KIAS . . . . . .« .« v o v v v v v v 127
Dynamic pressure at R and R

canister separation (calcu-

lated), Ib/ft2 o v et e e 40

Landing Weight

The landing weight of the test vehicle was 4726 pounds.

Center-of-Gravity Location

The center of gravity of the test vehicle was Z = 131.64, X =-0.07,
and Y =-2.9.

Results

All systems functioned correctly through main deployment, attitude
change, and blast-deflector jettison. Prior to attitude change, the test system
made a long run downwind toward the target. After attitude change, the sys-
tem was faced away from the target and regained the lost ground. Two 360°
left and two 360° right turns verified the turn system and indicated maximum
turn rates of 15 to 18 deg/sec. At +70 seconds, the altitude sensors deployed,
and the left sensor, bent at the root, trailed 5 to 7° aft of its normal extended
position. After verification of altitude-sensor deployment, the landing gears
were deployed by radio command. At approximately 3500 feet, the vehicle
was again turned downwind for the run to the target area. At approximately
1400 feet, a right-turn input was radio commanded to set up a hook approach
into target center. At this command, the right-turn line separated, and *he
system began to turn left. Several attempts were made to trim out this built-
in turn, but they were ineffective, due to the severed right-turn line. Peak
impact accelerations recorded were approximately 8g and occurred when the
vehicle rolled over about the main gear axis.
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Figures 21(a) to 21(f) depict the landing sequence. The parachute
in the foreground is the blast-deflector recovery parachute, and may be used
in these figures to indicate direction of ground wind. Figure 21(a) shows the
system approximately 200 feet in the air. Note the bank angle indicating left
turn. Also, the left-turn line is visible while the right line is missing. Fig-
ures 21(b) and 21(c) show the system in descent, just prior to impact. Note
the rotation to the left. Figure 21(d) shows rocket ignition. In figure 21(e),
the canopy continues to turn as the rockets fire. Note the roll angle of the
test vehicle. In figure 21(f), the parachute has jettisoned, and the test vehicle
has rolled on its side. Damage was limited to a sheared bracket on the nose
landing gear.

Failure Analysis

Two causative factors for the turn-cable failure were determined, as
follows:

1. At attitude change, the vehicle nose pitched down momentarily.
This bent the turn cables about the aft end of the cable cutter slots and put a
permanent set in the cables, which then did not wind smoothly onto the drum.

2. The tension-measuring device inside the turn motor (Vol. II,
fig. VII-20) was slot mounted. An impact load placed on it (such as attitude
change) could force it against the cable guide, jamming the roller. With the
roller jammed, the cable did not wind evenly on the drum and could be severed
by the ridges between the cable grooves. Microinspection of the cable guide,
drum, and severed cable indicated this was the failure mode. The failure
was subsequently reproduced in a static test.

Corrective Action

A 360° Teflon fairing block was mounted above the cable-cutter slot to
provide a rounded bearing surface for the cable. Cable diameter was in-
creased to 3/16 inch. The tension-measuring device was removed, and new
cable drums were fabricated with deeper and more widely spaced grooves to
accommodate the larger diameter cable. This modification reduced travel
to 37 inches.
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TEST 11 - FORT HOOD, TEXAS, MAY 27, 1965

Objectives

This test repeated test 10. The objectives were to evaluate the system
performance and to demonstrate the land landing. Prior to this test, the turn
motors were modified to eliminate the cause of failure in the previous test.

Onboard Systems

The onboard systems included a 22-ft d0 ringslot drogue parachute,

reefed to 19 percent for 12 seconds; R and R canister separation and attitude-
change mechanisms; a 70-ft d0 Para-Sail, reefed to 12.35 percent for

6 seconds; modified radio-command-actuated turn motors, with 37 inches of
travel; an 84-ft ringsail emergency parachute (radio commanded); two
deHavilland altitude sensors; a blast deflector, jettison mechanisms, and
recovery system; landing rockets; the Gemini spacecraft landing gear,
retention system, and deployment system; television and video-tape systems;
and a gear-stroke switch for parachute disconnect.

Sequencing

Release, SEC « v ¢ ¢« ¢ ¢ v ¢ o o o o o s . 0
R and R canister separation, sec . . . .. +5
Attitude change, sec . . . . . .. .. ... +25
Activate turn system, sec .. ... . e e s +35
Blast-deflector jettison, sec . ... ... +40
Altitude-sensor deployment, sec .. ... +70
Landing gear retaining-strap

release, SEC . ¢« ¢ ¢ e 0 b P e e 0 0 0w +105
Landing gear deployment, sec . .. ... +108
Disconnect switcharm, sec . .. .. ... +113
Begin circuitry inspection, sec . . ... . +120
Arm rocket motors, sec . . . .. .. ... ' +150
Rocketfire . . ... ... ......... Sensor closure
Parachute disconnect .. ... ... ... Gear stroke
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Launch Conditions

Altitude, ft . . . . .. ... . 0 .o 11 500
Velocity, KIAS . ... .. ... .. ...... 127
Dynamic pressure at R and R

canister separation (calcu-

lated), Tb/ft2 « o v v e e 40

Landing Weight

The landing weight of the test vehicle was 4726 pounds.

Center-of-Gravity Location

The center of gravity of the test vehicle was Z = 131.95, X = +0.127,
and Y = -2.71.

Results

At R and R canister separation, the vehicle pitched up approximately
100°, fouling the front parachute risers on the nose-gear torque arm. When
the vehicle pitched downward, the torque arm and one leg of the front riser
failed. The riser failure effectively cut six suspension lines, causing an
asymmetrically inflated shape and a 10 deg/sec built-in turn to the left, with
a loose skirt. Following attitude change, several attempts were made to trim
out the turn, but all were unsuccessful. One deHavilland altitude sensor
deployed as programed, but trailed at a slight angle. The other sensor failed
to deploy. Since the Para-Sail rate of descent appeared unaffected by the
severed riser, the decision was made to retain the Para-Sail for vehicle
recovery, rather than to employ the emergency parachute system. The land-
ing gears were not deployed. The rockets did not fire as programed, due to
a double malfunction in the altitude sensors, but the rockets fired 3.5 seconds
after impact. The nose gear and the television camera received major
damage, coupled with slight structural deformation of the test vehicle.

Failure Analysis

Parachute system. - The pitch oscillation is imparted to the vehicle by
the drop method. The drogue parachute did not damp the oscillation, because
of its short period of employment (5 seconds) and because it was attached to
the R and R canister at two points, allowing a fulcrum about which the vehicle
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could pitch. The 100° pitchup which occurred just after R and R canister
separation allowed the front riser bundle to slip behind the nose-gear torque
arm (which protrudes at right angles to the gear body in the stowed position),
and thus caused the parachute system malfunction. Three separate modifi-
cations were incorporated to prevent this failure mode, as follows: a roll
bar was added that prevents riser entanglement with the nose gear, thedrogue
parachute bridle and the R and R canister were modified to a four-point
attachment to provide omnidirectional damping, and drogue parachute employ-
ment time was increased to 10 seconds.

DeHavilland altitude sensors. - Separate malfunctions occurred in each
of the two deHavilland altitude sensors, as follows:

Sensor 1: Sensor 1 deployed as programed and trailed slightly, bent
back at the root. Examination of this sensor indicated that the trail was
caused by the root clamp which failed to lock properly. The trail would not
have affected rocket firing; however, the inspection circuitry which monitors
the altitude sensors, prior to rocket-motor arming, detected a microswitch
closure and locked-out rocket firing on that system. Microswitch sensitivity
was controlled by placing small silicon rubber blocks between the closure
elements. In this sensor head, the manufacturer had substituted blocks of
stiffer silicon rubber. Post-test investigation revealed that these blocks
took a permanent set while stored in the closed position; hence, the blocks
did not prevent microswitch closure resulting from normal vehicle motion.

Sensor 2: Sensor 2 did not deploy as programed, although post-test
examination showed that the bolt cutter fired, releasing the lid. The lid was
found at the initial impact point, which indicated that the lid was bound at the
hinge and did not fall free to release the sensor. After impact, the vehicle
rolled three revolutions. During the second roll, the sensor head came free
and fired the rockets where the sensor struck the ground during the roll.
Testing with this sensor was suspended, and a redesign effort was initiated.
The interim sensor was reinstated in the test program.

Turn-control system. - The turn—control system functioned normally.
The lack of parachute turn response was due to the cut riser which resulted in
a loose skirt and excess fullness. Test data indicated that the turn motors
executed reel-in and reel-out as commanded. Post-test examination showed
no evidence of cable damage. Special film coverage proved the necessity
of the 360° Teflon cable guide fairing.

44



TEST 12 - FORT HOOD, TEXAS, JULY 30, 1965

Objectives

The purpose of this test was to obtain system performance data, and to

demonstrate land landing at Gemini design conditions. Drogue parachute
employment time was increased to allow the system to accelerate to nominal
deployment dynamic pressure at main parachute deployment.

Onboard Systems

The onboard systems included a 22-ft do ringslot drogue parachute,

reefed to 19 percent for 12 seconds; R and R canister separation and attitude-
change mechanisms; a 70-ft d0 Para-Sail, reefed to 12.35 percent for

6 seconds; modified radio-command-actuated turn motors, with 37 inches of
travel; an 84-ft ringsail emergency parachute (radio commanded); an interim
altitude sensor; a blast deflector, jettison mechanism, and recovery system;
landing rockets; the Gemini spacecraft landing gear, retention system, and
deployment system; television and video-tape systems; and a gear-stroke
switch for parachute disconnect.

Sequencing

Release, sec . .. ... ... .. e 0
R and R canister separation, sec . . . . +10
Attitude change, sec . .. .. ... ... +30
Activate turn system, sec . . ... ... +40
Blast-deflector jettison, sec . ... . .. +45
Altitude-sensor deployment, sec . . . .. +75
Landing gear retaining-strap

release, SEC .+ « ¢ v ¢ v v e 04w .. +110
Landing gear deployment, sec .. ... . +120
Disconnect switch arm, sec . .. .. .. +128
Begin circuitry inspection, sec . . . .. +135
Arm rocket motors, sec ... .. .. .. +155
Rocketfire . ... ... ... ...... Sensor closure
Parachute disconnect . . ... ... ... Gear stroke
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Launch Conditions

Altitude, ft . . . . . . . o Lo oo oo e oo 12 200
Velocity, KIAS . . . . . . . . o oo v v v v 127
Dynamic pressure at R and R

canister separation (calcu-

lated), 1Ib/8t2  « o v e e 72

Landing Weight

The landing weight of the test vehicle was 4711 pounds.

Center-of-Gravity Location

The center of gravity of the test vehicle was Z = 131.43, X = +0.49,
and Y = -2.43.

Results

All systems performed as programed. Immediately following blast-
deflector jettison, both left and right turn potentials were verified and fur-
nished a 12 to 15 deg/sec rate of turn. The test vehicle was then maneuvered
approximately 2 miles crosscountry to the primary landing zone.

Figure 22 depicts the landing sequence. At the left, the vehicle is in
final approach. The tarpaulin in the right center is the center aiming point.
In the center, the rockets have ignited and have begun to decelerate the vehi-
cle. At the right, the system has touched down, disconnected the Para-Sail,
and is sliding out.

Surface winds were 1 to 2 knots, light and variable. The maximum
accelerations recorded were approximately 4.8g. The gear touched down
40 feet from the point of rocket ignition, and the vehicle slid an additional
55 feet. All test objectives were met. This test successfully concluded the
program.
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RESULTS

Parachute Suspension System and Loads

Bridle geometry and steady-state loads. - In the final suspension system
(fig. 23), all of the risers were constructed from two-ply, 10 000-pound nylon
webbing, type XIX, MIL-W-4088B, condition R. The total riser length was
determined by the rear-riser strip-out channel-routing distance, and by the
parachute confluence angle. To provide the 13° nose-down flying attitude, it
was necessary to shift the force line of the front risers aft, by attaching them
to the confluence of a V-bridle. The average loads measured during straight
and level flight of the 70-ft dO Para-Sail were as follows:

. Total load,
Bridle segment percent
Front V-bridle leg 17.9
Rear V-bridle leg 23.3
Left rear riser 29. 4
Right rear riser 29. 4

Opening loads. - Load data were presented for the final (70-ft) Para-Sail
configuration only, and were obtained by means of a universal load link at the
single attach point.

A composite presentation of opening loads was correlated to a common
time scale (fig. 24), wherein line stretch occurred at 5.0 seconds. Deploy-

ment was initiated at a dynamic pressure of 40 lb/ftz, as shown by the solid
band representing the force-time histories for tests 9 and 10. As shown in
the figure, reefed opening shock occurred approximately 2 seconds after line
stretch, and reached an average peak value of 10 000 pounds. The system
then decelerated to a steady reefed-descent state (1g) an average of 3.5 sec-
onds after the reefed opening shock, and maintained that condition until dis-
reef. Approximately 1.2 seconds after disreef, the parachute reached an
average full-open shock value of 16 000 pounds, rebounded slightly, then
descended in the fully open, 1g state.

The reefing parameters were developed to balance opening forces when

the parachute was deployed at a dynamic pressure of 80 lb/ft2 . On test 12,
which closely approximated the nominal, or design, deployment case, opening
load records were lost due to a faulty strain gage. However, in test 6 of the
El Centro parachute test series (reported in detail in Volume IT, Section III),
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the canopy was deployed with an identical payload at a dynamic pressure of

84 1b/ft2. The force-time history from this test with the time correlated to
adjust for sequence, presented in figure 24 as a dotted line, indicated that the
parachute exhibited a reefed opening shock of 15 600 pounds 2.1 seconds after
line stretch, and reached a peak of 15 800 pounds 1.1 seconds after disreef.
The parachute reached a 1g condition, representing a descent velocity of
approximately 120 ft/sec, in the reefed state in both cases; and disreef was
initiated from this point, independent of initial opening velocity, as indicated
by examination of the two curves. Consequently, the portion of the load his-
tory following disreef should be identical in both cases.

A detailed discussion of the opening loads experienced during the
El Centro development tests (Volume II, Section III) indicated that the para-
chute demonstrated excellent repeatability in opening history. The dotted
line in figure 24 not only presents the results of a particular test, but also
furnishes an accurate representation of the expected opening forces whenever
the parachute is deployed at nominal Gemini conditions.

Attitude change loads. - After the test system had achieved a steady-
state descent on the fully opened parachute, the single-point disconnect was
activated, allowing the vehicle to tip over to the flying attitude, where the
load was assumed by the individual risers. Figure 25 presents a typical
force-time history for the separate risers during this maneuver. High-speed
camera coverage of attitude change indicated that the vehicle fell in its exist-
ing attitude until the rear V-bridle leg and rear risers assumed the load; then
it rotated, nose downward, aboutthese points. The leading edge of the vehicle
rotated well past the normal position before rebounding. The test vehicle
then exhibited a minor oscillation in the pitch plane that damped in 9 to 12 sec-
onds.

The load traces supported the observed results. As shown, the rear
V-bridle leg received a peak loading of 2500 pounds, 0.9 second after the
single point was released. At the same time, each rear riser assumed a
momentary peak load of 2000 pounds, while the forward V-bridle leg was
slack. At this point, the vehicle began to rotate. The load in the rear risers
dropped momentarily as the system rebounded, then peaked again at approxi-
mately 2500 pounds for each riser. The pitch rotation was clearly evident as
the load in the rear V-bridle leg went to zero, and the forward leg built to a
load peak of almost 4000 pounds as the vehicle pitched nose down.

From this point, the oscillation in the pitch plane was evidenced by the
harmonic load variation in the V-bridle legs. The pitch oscillation damped
rapidly at a frequency of approximately 1 cps. Twelve seconds after initiation
of the maneuver, the riser loads had stabilized.
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A vertical axis g-time history for the attitude-change maneuver (fig. 26)
showed that the peak acceleration of 1.87g occurred 1.2 seconds after the
single-point release. An analysis of the high-speed film coverage indicated
that this was the point of maximum travel when the vehicle had pitched nose
down past the normal flying attitude.

The nonrigid parachute system, by which the testvehicle was suspended,
facilitated the low g-loading during this maneuver. A static test of this same
attitude repositioning, with the vehicle rigidly suspended, produced accelera-
tions of approximately 4g. The elastic properties of the nylon suspension
system, which contributed to the reduction in peak g, also created the short
duration pitch oscillation (figs. 25 and 26).

Parachute contribution during rocket fire. - In analytically determining
the desired thrust-time characteristics for rocket-motor development, the
vertical decelerating force exerted by the parachute was assumed to be pro-
portional to the square of the instantaneous descent velocity of the vehicle.
These calculations began with the basic steady-state drag equation

F=W-= CD p/2 st (1)

and assumed that CD p/2 S remained constant; therefore

F = kv2 (2)

at any time during rocket fire. This assumption did not account for velocity
difference between the parachute and the vehicle, due to elasticity in the sus-
pension system, or for change in CDS due to velocity change.

The parachute riser load was calculated by equation (2), using instanta-
neous velocities obtained by iterative integration of the rocket accelerations
and the parachute vertical retardation force. These data are presented as a
dotted line in figure 27. The area under this curve represents the impulse in
pound-seconds contributed by the parachute and is sufficient to reduce descent
velocity approximately 4 ft/sec. This amounts to approximately 18 percent of
the total velocity reduction and, as such, is highly significant in thrust-time
determination.
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To determine the actual variation of parachute loading, riser loads
were measured during rocket fire during full-scale drop tests. These data,
also presented in figure 27, illustrated that the riser load dropped off quickly
during high thrust, bottomed out at the end of high thrust, then increased
again as the vehicle slowly accelerated during the sustained low-thrust por-
tion of rocket fire. At impact, the parachute was disconnected, and the load
went to zero. It should be noted that the analytically determined curve
closely approximates the measured test data once the residual load, due to
suspension system elasticity, has deteriorated.

Stability

Steady state. - In the parachute development tests at El Centro, efforts
were made to measure canopy oscillation during steady-state descent. These
oscillations were extremely low, and accurate measurement was impossible.
It was determined that total canopy oscillatory travel was less than + 3° in any
axis, but no specific value was discerned.

Vehicle pitch, roll, and yaw rates were measured during the system
test program, and were then integrated to determine vehicle oscillatory
travel. Typical steady-state rate data are presented in figure 28. The vehi-
cle exhibited peak roll rates on the order of + 2 to 3 deg/sec at a frequency
of 1 cycle every 5 to 6 seconds. Integration of this curve showed the average
oscillatory travel in roll to be +5.85°. The peak vehicle pitch rates were on
the order of + 1 to 2 deg/sec, at a frequency of 1 cycle every 3 to 4 seconds.
Integration of this curve showed the average oscillatory travel in roll to be
+2.75°. In yaw, the peak vehicle rates were on the order of = 1 to 2 deg/sec,
with random cycling. Integration of this curve showed the average oscillatory
travel in yaw to be +2.35°.

An examination of these data indicated that all vehicle oscillations were
quite low both in rate and in travel, with roll oscillation being larger. A cor-
responding analysis of test film coverage indicated oscillatory travel values
of less than +5° in all three axes, with pitch oscillation being predominant.
Although there was an apparent discrepancy in these two separate data sources
as to whether pitch or roll was relatively greater, the important fact was that
both sources independently verified the high degree of vehicle stability.

Attitude during turn. - As predicted by the 1/3-scaled model, the full-
scale vehicle banked out and pitched nose down during a turn maneuver, both
actions being a function of turn rate. The banking phenomenon occurred be-
cause the forward inertia of the vehicle tended to keep it traveling in a straight
line while the canopy rotated away from it. The change in pitch attitude dur-
ing turn was caused by the strong pitch-down characteristic of the parachute.
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The variation of bank angle with turn rate (fig. 29) indicated that the
vehicle began to bank as soon as any turn was present, and reached an angle
of 18° at a turn rate of 20 deg/sec. The effect of turn rates on pitch attitude
(fig. 30) indicated that pitch attitude changed when any turn was present and
reached an angle of approximately 28° at a turn rate of 20 deg/sec.

The separated riser suspension system (fig. 23) provided a strong
couple, such that rotation of the canopy induced the same rotational travel in
the vehicle. During the acceleration up to a constant rate of turn, the vehicle
lagged the parachute some 5 to 10° in yaw. Once a constant turn rate had
been established, there was no yaw variation between the parachute and the
vehicle. When the turn line was released, the parachute immediately ceased
to turn, and the vehicle/parachute combination returned to nominal attitude
in 2 to 3 seconds with no oscillation.

Turn System

Required turn performance. - Analytical studies, conducted prior to
testing, indicated that a maximum turn rate of at least 10deg/sec was required
for adequate maneuvering. No attempt was made to determine an upper
limit analytically. During the test programs, turn rates up to 75 deg/sec
were obtained on the 1/3-scaled-model system and up to 50 deg/sec on the
full-scale system. In both cases, the maximum rate attainable was in excess
of the optimum operating range.

The objective of the turn-performance investigation was the determina-
tion of the range of turn rates which allowed full utilization of system capa-
bilities. To establish end points, the minimum usable rate was defined as
the lowest attainable rate which still allowed the system to be maneuvered
into a preselected landing area and alined with the wind. The maximum usable
rate was defined as the highest rate of turn at which the system's direction
could be accurately changed to a new heading.

Determination of the minimum usable rate was accomplished by flight
tests of the 1/3-scaled system, with turn-line travel restricted to furnish
maximum turn rates of 10, 12, and 16 deg/sec. In these tests, the 10 deg/sec
rate was marginally acceptable. The maximum usable rate was found to be
somewhat a function of turn-motor reel-out time, since a fast reel-out aided
the flight controller to aline accurately on the desired headings.

In the 1/3-scaled-model program, reel-out was accomplished almost
instantaneously, causing the parachute, when commanded, to stop rotating.
The governing factor in determining maximum usable rate then became the
ability of the controller to recognize the correct heading, and to transmit a
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signal. The program results indicated that an experienced controller could
handle rates up to 45 deg/sec, with an optimum somewhere in the 25 to
35 deg/sec range.

In the full-scale program, reel-out was accomplished by releasing the
motor brake and allowing the force in the turn line to pull the cable out. This
action required from 3 to 6 seconds, depending upon line load, and resulted in
additional turn travel after the reel-out signal was transmitted. With this
type of system, the controller could handle rates up to 25 deg/sec, with an
optimum in the 18 to 20 deg/sec range.

It was concluded from these results that the desired operational turn-
rate range for the land landing system was from 10 to 25 deg/sec, with an
optimum value around 18 deg/sec, and that motor reel-out time should be
held to a minimum to allow for accurate heading alinement.

Line arrangement. - The final turn-line arrangement consisted of a
nylon webbing attached to the turn-motor cable and extending upward into the
parachute, dividing into four branches below the skirt. Each of the branches
passed through reefing rings on the turn slots and was sewed to the radial
seam at the vent band. When the turn line was shortened, these branches
formed cords inside the canopy, which pulled the turn slots toward the canopy
center.

Turn-line length. - The determination of the correct turn-line length was
one of the most difficult technical problems encountered during the develop-
ment effort. To provide a fixed reference point, a turn zero was defined as
the point on the turn lines corresponding to the junction of the suspensionlines
and the risers when the turn slots were fully open, and any shortening of the
turn line would begin to close them. Below this point, the precise length was
determined by suspending the vehicle in the flying attitude and measuring the
distance.

Before the full-scale test program began, relative elongations of the
parachute suspension lines and turn lines were calculated, and an analytical
turn zero was determined. Next, the 70-ft Para-Sail was ground inflated in
a 20 to 25 ft/sec wind and turn zero was marked. Both of these efforts indi-
cated a line length of approximately 98.5 feet, and the 70-ft Para-Sail tests
were initiated with this setting. These techniques proved to be ineffective
since they did not account for the added elongation resulting from opening
shock, a part of which remained in the suspension lines until all load was re-
moved. Turn zero was then determined by increasing turn-line length by
increments on succeeding tests, and measuring the line force. Figure 31
presents these data, and establishes turn zero at approximately
101 feet 4 inches.
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In addition to the determination of the correct turn zero, several other
pertinent facts regarding line length were ascertained from the development

program, as follows:

1. It was impossible to achieve zero load in a turn line, since air drag
on the line accounted for 5 to 10 pounds of force. It was also found that any
length turn line, if placed on one side of the canopy only, caused the canopy
to rotate, due to the weight of the line and air drag.

2. Every parachute tested exhibited a built-in turn due to minor fabri-
cation asymmetries or to variation in true turn zero between the two sides of
the canopy. During the system test program, it was necessary to trim out
this built-in turn potential by shortening the opposing turn line. In most
cases, the built-in rate was 10 deg/sec or less, and requiredonlyafew inches
of travel on the opposite side to trim it out. In the worst instance, the canopy
exhibited a built-in rate of approximately 25 deg/sec and required 17 inches
of travel to trim out. It should be noted that turn zero was shorter on this
test than the finally derived value.

3. The way in which the turn lines were measured to set the length was
critical, due to the large amount of elongation under very low force. The
practice followed was to place the parachute on the rigging table with the sus-
pension lines under 20 pounds of tension, and to measure the turn lines under
10 pounds of tension.

Rate of turn. - In presenting the rate of turn as a function of line force,
the attempt was made to correct for individual parachute idiosyncrasies re-
sulting in built-in turn, and for incorrect settings on the opposite turn line
which retarded turn rate. These data (fig. 32) did not reflect the perform-
ance of any given canopy during the test program, but presented the average
rate of turn with factors other than turn-line force removed. The method
whereby these data were corrected was to equate built-in turns, resulting
from canopy asymmetry and foreshortened opposing turn lines, to a turning
moment. Since the built-in turn rates were known, the extraneous moment
and the built-in turn could be subtracted out. The residual moment was then
expressed as a turn-line force furnishing the remaining turn rate.

Travel time. - A typical variation of turn-line position and load was pre-
sented as a function of time in reel-in and reel-out (fig. 33). In reel-in, the
curve showed an initial load of 25 pounds, which increased to 110 pounds
(motor stall) in approximately 1 second. During this time interval, the turn-
line position plot showed a foreshortening of zero from 42 inches to approxi-
mately 6 inches. In reel-out, the load decreased to the 25-pound residual load
in approximately 4 seconds. The position plot showed the extension of turn
zero from the reel-in position back to full out.
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In a turn system in which trim was accomplished by the primary turn
motors, either reel-in time or reel-out time must be paced to allow for trim
adjustment. In the development program, trim was accomplished during
reel-out since this speed was approximately 1 ft/sec, as opposed to the reel-
in time of approximately 3.5 ft/sec. This method was not specifically de-
signed, but resulted from the operating characteristics of the turn motors.
The 1 ft/sec reel-out speed was adequate to allow trim.

Landing Dynamics

At the initiation of the landing sequence, the vehicle was nominally sus-
pended in a -13° pitch, 0° roll, 0° yaw attitude, and was descending at approxi-
mately 29 ft/sec with a horizontal velocity of from 0 to 30 ft/sec. When the
main landing gears were approximately 8.7 feet above the surface, the altitude
sensor ignited the rocket motors. (Figure 34 presents a nominal rocket-
system acceleration history.) The combined motors furnished a peak accel-
eration of 3.60g, an average high-thrust acceleration level of 2.65g for
0.35 second, and a sustained low-thrust acceleration level of approximately
0.5¢g for an additional second.

Figure 35 shows the approximate effect of the rocket system on descent
velocity. Descent velocity decays in an essentially linear manner during the
high-thrust phase, then increases again during the sustained-thrust phase.
This velocity variation, discussed in detail in Volume II, Section IV, is cor-
rectly expressed as a family of curves which accounts for variation in initial
rates of descent, temperature, motor performance, and so forth, just as
true rocket-system acceleration history must be expressed as a family rather
than a single trace.

The two individual curves chosen approximated the conditions of the
majority of the drop tests, and were used in the following discussion of impact
accelerations. Rocket ignition height was established to insure that gear
touchdown occurred at some point during the sustained thrust level, while the
velocity was within the landing-gear envelope. The nominal setting approxi-
mated the midpoint of this range to allow the widest possible variation in ini-
tial conditions.

The gear touchdown plane was at an angle of -18.3° to the vehicle cen-
terline. This allowed the main landing gear to absorb the initial impactbefore
the vehicle rotated the additional 5.3° and the nose gear touched down. This
method provided the greatest margin of impact stability for the Gemini space-
craft in the same manner as for conventional aircraft. Following touchdown,
horizontal velocity was dissipated in slideout.
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In a nominal land landing, the vehicle should experience an initial ac-
celeration history approximating that furnished by the rocket system, coupled
with the initial 1g felt by the crew during parachute descent. During sustained
thrust, the main gear should touch down, furnishing an initial peak accelera-
tion of the same magnitude as the peak rocket acceleration, then exhibiting an
acceleration history that follows the main gear force-stroke characteristics
(Volume II, Section IX). Shortly thereafter, the nose gear should touch down,
furnishing a second impact peak slightly lower than the initial impact, since
the main gear will have absorbed part of the impact energy. If any horizontal
velocity is present, the vehicle should slide forward on all three gears, reg-
istering a constant acceleration of about 0.25g along the Z-axis. This value
corresponds to a surface friction coefficient in the 0.4 to 0.5 range. The
1/3-scaled landing dynamics studies predicted slideout distances of 0 to 60 feet
at the end points of the horizontal velocity range.

In the event the vehicle lands in water, the acceleration history prior to
impact should be the same as the land landing case, and an initial impact ac-
celeration slightly lower than the rocket-system peak should occur as the
bottom of the spacecraft impacts on the water surface. Some minor rebound
accelerations would also occur as the vehicle sought a flotation attitude.

Land landing accelerations. - The accelerations for test 12, in which the
vehicle had an initial forward velocity of approximately 35 ft/sec, and for the
second crane drop, in which the vehicle had no horizontal velocity, were pre-
sented to provide a broad base data description of land landing.

Impact accelerations were measured by X-, Y-, and Z-axis accelerom-
eters mounted at the vehicle center of gravity. Rocket accelerations were
measured by an additional accelerometer mounted on the thrust-line axis, and
also located at the vehicle center of gravity. Rocket performance was further
monitored by recording chamber pressure during firing.

Figure 36 illustrates the thrust-line accelerations recorded during
test 12 and only one of the rocket chamber-pressure traces, since both the
left and the right motor pressures were identical.

The corresponding X-, Y-, and Z-axis accelerations were presented as
curves on a time scale with zero arbitrarily set just prior to altitude-sensor
signal (fig. 37). During this test, the vehicle had just completed a left turn
and was in a 10° left roll at rocket ignition.

As shown by the chamber pressure, peak high thrust occurred at ap-
proximately 0.075 second, and the rocket motors provided an essentially nom-
inal thrust-time history. (The correlation of chamber pressure and thrust is
discussed in Volume II, Section IV.) The thrust-line and Y-axis (13° from
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thrust line) accelerometers also showed peak high thrust at this time, record-
ing 4.68g and 4.67g, respectively. These values corresponded to an initial 1g
parachute descent condition and a nominal 3.60g peak rocket acceleration.
After the initial peak, the thrust-line and the Y-axis accelerations repeated
the rocket output indicated by the chamber-pressure trace, reaching the sus-
tained thrust level at 0.5 second and maintaining it until touchdown. During
rocket fire, the vehicle remained in the 10° roll attitude. Consequently, the
left main gear touched down first at 0.70 second, recording accelerations

of 1.76g on the thrust line, 1.9g on the Y-axis, 0.6g on the X-axis, and 1.2g
on the Z-axis. At 0.8 second, the right main gear touched down as the gear
system corrected the rolled condition. The nose gear touched down at ap-
proximately 1.0 second, registering accelerations of 1.4g on the thrust line,
1.9¢ on the Y-axis, and 1.08g on the Z-axis.

The time period from 1.0 to 4.0 seconds contained the accelerations that
occurred during slideout. As shown, the Y-axis accelerometer recorded an
expected 1g average, and the Z-axis accelerometer recorded an average
of 0.22g, indicating the correct surface friction coefficient of 0.45. The total
slideout distance was 55 feet.

An examination of figures 36 and 37 showed that all accelerations re-
sulting from the land landing in test 12 were successfully controlled below a
level of 5g, and that the vehicle maintained stability throughout the landing.

The thrust-line accelerations were recorded during the second crane
drop in which the vehicle landed on a sod surface (fig. 38). An arbitrary
zero time was selected 0.2 second prior to release of the vehicle from the
overhead crane. Since no horizontal velocity or roll conditions were present,
the X- and Z-axis accelerations were essentially zero and were not included
in the figure. The Y-axis trace generally repeated the thrust-line accelera-
tions shown.

Since the vehicle was allowed to free fall to achieve parachute descent
velocity at altitude-sensor contact, the previously seen 1g initial descent con-
dition was absent. Consequently, 1g must be added to the initial acceleration
values shown when these results are compared with parachute drop test
results. The accelerations, beginning with the sustained thrust level, were
directly comparable.

As shown in figure 38, the vehicle free fell at a Og condition until rocket
ignition, and received a peak thrust acceleration of 3.89g. The acceleration
trace then followed the nominal rocket-system acceleration history shown in
figure 34. Initial impact occurred as programed at the approximate midpoint
of the low thrust level. The main gear touched down at 1.90 seconds, and the
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initial impact peak was recorded at 3.9g. The nose gear touched down at
2.20 seconds, and a secondary peak of 1.7g was recorded.

In the crane drop, as in test 12, all landing accelerations were con-
trolled below a level of 5g.

Unstable land landings. -~ Due to a control system failure during test 10,
the vehicle attitude at touchdown considerably exceeded the stable envelope.
As predicted by the 1/3-scaledlanding dynamics study, the vehicle tumbled on
its left side and rolled over. While this test was considered unsuccessful
from the standpoint of landing stability, it provided valuable acceleration data
by which an unstable landing could be evaluated and the possible effect on a
flight crew could be determined.

The accelerations in the X-, Y-, and Z-axis plus the angular roll rate
were recorded (fig. 39). The vehicle attitude, at significant times during
the landing, was determined from high-speed film coverage and was included
in the figure.

Zero time was arbitrarily set just prior to rocket fire. At this point,
the vehicle was pitched down 25°, rolled left 22°, and in a left turn which
represented a yaw of approximately 45°. The resultant acceleration, due to
the 1g descent and built-in turn, was 1.12g.

At peak rocket thrust (0.07 second) the accelerometers recorded 0.9¢g in
the X-axis, 4.25g in the Y-axis, and 1.0g in the Z-axis. The roll attitude
derived from the film analysis at this point was 22°, whereas the X- and Y-
acceleration resultant indicated it to be 26°.

Initial impact occurred when the left gear touched down. Film analysis
showed that the roll angle was 36°, while the X- and Y-acceleration resultant
indicated it to be 39.5°. The peak resultant acceleration occurred at this
point and was 8.9g, which correlated closely with the 8g peak predicted by
the 1/3-scaled landing dynamics study. The vehicle continued to rotate about
the left main gear and received a second impact of 1.4g as the side of the
vehicle struck the ground.

At approximately 1.5 seconds, the accelerometers recorded a high spike
which was discounted as telemetry signal interference when film analysis did
not indicate any vehicle motion of a nature to explain the possible high ac-
celerations; but the film did show that the high spike occurred at the precise
instant the vehicle rolled over on the telemetry antenna. The vehicle con-
tinued to roll until the right main gear contacted the ground at approximately
2.15 seconds.
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While the maximum acceleration of 8.9g was approximately twice that
expected during a stable land landing, it compared favorably to the 5g to 16g
range expected with the existing Gemini spacecraft water landing system, and
was well within acceptable tolerance levels.

Water landing. - During tests wherein the vehicle landed in water, im-
pact dynamics data were collected to evaluate system performance. When the
rockets were incorporated, the ignition height was set at that established for
land landing to demonstrate the retention of water landing capability, and to
obtain a realistic data picture of the contingency water landing case.

The representative water-impact acceleration histories with and without
the landing rockets are presented in figure 40. The accelerations presented
were those in the vertical, or Y-axis, since these represented the major ac-
celerations experienced. It should be noted that the accelerometers mounted
in the vertical axis read 1g during steady-state descent, and all impact ac-
celerations were recorded from that point. The nonrocket test presented did
include an altitude sensor which fired flashbulbs. Consequently, it was pos-
sible to correlate both tests to a common sensor impact time.

For the test without rockets, the vehicle continued to descend at 1g until
impact (fig. 40). A peak acceleration total of 3.4g occurred 0.41 second after
altitude-sensor signal. This corresponded to a descent velocity of 26 ft/sec.
The portion of the acceleration history following impact and shown at 1g was
lost due to immersion of the telemetry antenna in salt water. A study of high-
speed film coverage of this test indicated a rebound existed as the vehicle
returned to its flotation attitude. Analysis of similar tests indicated rebound
accelerations were below those experienced at impact. Following this test,
the telemetry antennas were moved to the top of the test vehicle.

For the test which included rockets, a peak acceleration of 4.6g occurred
0.03 second after altitude-sensor signal. This acceleration value correspond-
ed closely to the initial 1g state and the nominal 3.60g peak high thrust fur-
nished by the rockets. The accelerations then followed the rocket thrust-time
history, shown in figure 34, until impact. The peak impact acceleration re-
corded was approximately 1.8g. As predicted, this occurred just prior to
rocket burnout, rather than near the center of the sustained thrust level
where deployed landing gear would have impacted. From a comparison of
figures 34 and 40, the accelerations experienced at impact were shown to be
considerably lower when the rockets were employed.
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As shown in the weight summary, the mechanical landing gears com-
prise the major portion of the weight. These gears do not necessarily repre-
sent the most efficient design, but were incorporated without change.

The total weight shown is approximately 444 pounds heavier than the
parachute system currently used to land the Gemini spacecraft in the ocean.
This weight difference can be reduced by the partial elimination of the various
flotation and location aids required to support water landing and recovery.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, September 23, 1966
904-02-15-01-72
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NASA-S-66-10305 OCT 24
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Figure 1.~ Gemini spacecraft boilerplate station and nomenclature diagram (200 series).
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Figure 2.~ Top view of Gemini spacecraft boilerplate (200 series),
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Figure 3 ,~ Bottom view of Gemini spacecraft boilerplate (200 serles),
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NASA-S5-66-8846 SEP 19
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Nose landing gear " &t
Rocket motor location Altitude sensors

Figure 4,- Land landing system in flight
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NASA-S-67-568

Turn lines g

Figure 8.- Flying attitude.
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Figure 9,- Suspension system,
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NASA-S-66-8836 SEP 19

Figure 14 .~ Rocket ignition on water,
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NASA-S-66-8835 SEP 19

Figure 15,- Test 3, impact,
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Figure 16,- Test 5, in flight.
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NASA-5-66-8827 SEP 19

(a) Test set=up.
Figure 18.~- Crane drop II.
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(b) Free fall.
Figure 18,- Continued,
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NASA-S-66-8810 SEP 19

Riser load, b X 10™>

Riser load, Ib X 10=3

—— Forward V-bridle leg
— — Rear V-bridle leg

™\
//\\/ VA NAN

—=— Left rear riser
— Right rear riser

12

Time from attitude change, sec

Figure 25,- Attitude-change loads.
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NASA-S-66-8800 SEP 19

Descent velocity, ft / sec
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Figure 35.- Nominal velocity decay during rocket fire,
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Figure 36 .- Test 12, landing accelerations, thrust line,
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Figure 37 .~ Test 12, landing accelerations, three axes.
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Figure 41 .- Command=-pilot window, field of view,
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Figure 46 .- Test 12, erosion path,
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